Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The faint light in groups and clusters of galaxies

Abstract

The diffuse light that spreads through groups and clusters of galaxies is made of free-floating stars not bound to any galaxy. This is known as the intracluster light (ICL) and holds important clues for understanding the evolution of these large structures. The study of this light has gained traction in the past 20 years thanks to technological and data processing advances that have permitted us to reach unprecedented observational depths. This progress has led to ground-breaking results in the field, such as pinpointing the origin of the ICL and its potential to map dark matter in clusters of galaxies. We now enter an era of deep and wide surveys that promise to uncover the faint Universe as never seen before, adding to our growing understanding of the properties of the ICL and, consequently, of the formation of the largest gravitationally bound structures in the Universe. The goal of this Review is to summarize the most recent results on ICL, synthesizing the current knowledge in the field and providing a global perspective that may benefit future ICL studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of the different definitions of ICL.
Fig. 2: ICL fraction with redshift for clusters of galaxies.
Fig. 3: ICL fraction with halo mass for groups and clusters at z < 0.07.
Fig. 4: Correlations of the BCG + ICL fraction.
Fig. 5: ICL/(BCG + ICL) as a function of redshift.

Similar content being viewed by others

References

  1. Zwicky, F. The Coma Cluster of galaxies. Publ. Astron. Soc. Pac. 63, 61 (1951).

    Article  ADS  Google Scholar 

  2. Mihos, J. C., Harding, P., Feldmeier, J. & Morrison, H. Diffuse light in the Virgo Cluster. Astrophys. J. Lett. 631, L41–L44 (2005).

    Article  ADS  Google Scholar 

  3. Feldmeier, J. J., Mihos, J. C., Morrison, H. L., Rodney, S. A. & Harding, P. Deep CCD surface photometry of galaxy clusters. I. Methods and initial studies of intracluster starlight. Astrophys. J. 575, 779–800 (2002).

    Article  ADS  Google Scholar 

  4. Krick, J. E. & Bernstein, R. A. Diffuse optical light in galaxy clusters. II. Correlations with cluster properties. Astron. J. 134, 466–493 (2007).

    Article  ADS  Google Scholar 

  5. Kluge, M. et al. Structure of brightest cluster galaxies and intracluster light. Astrophys. J. Suppl. Ser. 247, 43 (2020).

    Article  ADS  Google Scholar 

  6. Arnaboldi, M., Ventimiglia, G., Iodice, E., Gerhard, O. & Coccato, L. A tale of two tails and an off-centered envelope: diffuse light around the cD galaxy NGC 3311 in the Hydra I cluster. Astron. Astrophys. 545, A37 (2012).

    Article  ADS  Google Scholar 

  7. Iodice, E. et al. The Fornax Deep Survey with VST. I. The extended and diffuse stellar halo of NGC 1399 out to 192 kpc. Astrophys. J. 820, 42 (2016).

    Article  ADS  Google Scholar 

  8. Watkins, A. E., Mihos, J. C., Harding, P. & Feldmeier, J. J. Searching for diffuse light in the M96 galaxy group. Astrophys. J. 791, 38 (2014).

    Article  ADS  Google Scholar 

  9. Mihos, J. C. et al. The Burrell Schmidt Deep Virgo Survey: tidal debris, galaxy halos, and diffuse intracluster light in the Virgo Cluster. Astrophys. J. 834, 16 (2017).

    Article  ADS  Google Scholar 

  10. Kluge, M. et al. Photometric dissection of intracluster light and its correlations with host cluster properties. Astrophys. J. Suppl. Ser. 252, 27 (2021).

    Article  ADS  Google Scholar 

  11. Sérsic, J. L. Atlas de Galaxias Australes (Observatorio Astonomico, Universidad Nacional de Cordoba, Argentina, 1968).

  12. Gonzalez, A. H., Zabludoff, A. I. & Zaritsky, D. Intracluster light in nearby galaxy clusters: relationship to the halos of brightest cluster galaxies. Astrophys. J. 618, 195–213 (2005).

    Article  ADS  Google Scholar 

  13. Huang, S. et al. Individual stellar haloes of massive galaxies measured to 100 kpc at 0.3 < z < 0.5 using Hyper Suprime-Cam. Mon. Not. R. Astron. Soc. 475, 3348–3368 (2018).

    Article  ADS  Google Scholar 

  14. Montes, M., Brough, S., Owers, M. S. & Santucci, G. The buildup of the intracluster light of A85 as seen by Subaru’s Hyper Suprime-Cam. Astrophys. J. 910, 45 (2021).

    Article  ADS  Google Scholar 

  15. Willman, B., Governato, F., Wadsley, J. & Quinn, T. The origin and properties of intracluster stars in a rich cluster. Mon. Not. R. Astron. Soc. 355, 159–168 (2004).

    Article  ADS  Google Scholar 

  16. Dolag, K., Murante, G. & Borgani, S. Dynamical difference between the cD galaxy and the diffuse, stellar component in simulated galaxy clusters. Mon. Not. R. Astron. Soc. 405, 1544–1559 (2010).

    ADS  Google Scholar 

  17. Cui, W. et al. Characterizing diffused stellar light in simulated galaxy clusters. Mon. Not. R. Astron. Soc. 437, 816–830 (2014).

    Article  ADS  Google Scholar 

  18. Cooper, A. P. et al. Surface photometry of brightest cluster galaxies and intracluster stars in ΛCDM. Mon. Not. R. Astron. Soc. 451, 2703–2722 (2015).

    Article  ADS  Google Scholar 

  19. Dressler, A. The dynamics and structure of the cD galaxy in Abell 2029. Astrophys. J. 231, 659–670 (1979).

    Article  ADS  Google Scholar 

  20. Kelson, D. D. et al. Determination of the dark matter profile of A2199 from integrated starlight. Astrophys. J. 576, 720–737 (2002).

    Article  ADS  Google Scholar 

  21. Edwards, L. O. V., Alpert, H. S., Trierweiler, I. L., Abraham, T. & Beizer, V. G. Stellar populations of BCGs, close companions and intracluster light in Abell 85, Abell 2457 and IIZw108. Mon. Not. R. Astron. Soc. 461, 230–239 (2016).

    Article  ADS  Google Scholar 

  22. Gu, M. et al. Spectroscopic constraints on the buildup of intracluster light in the Coma Cluster. Astrophys. J. 894, 32 (2020).

    Article  ADS  Google Scholar 

  23. Arnaboldi, M. et al. The kinematics of the planetary nebulae in the outer regions of NGC 4406. Astrophys. J. 472, 145 (1996).

    Article  ADS  Google Scholar 

  24. Longobardi, A., Arnaboldi, M., Gerhard, O., Pulsoni, C. & Söldner-Rembold, I. Kinematics of the outer halo of M 87 as mapped by planetary nebulae. Astron. Astrophys. 620, A111 (2018).

    Article  ADS  Google Scholar 

  25. Longobardi, A., Arnaboldi, M., Gerhard, O. & Hanuschik, R. The outer regions of the giant Virgo galaxy M 87 Kinematic separation of stellar halo and intracluster light. Astron. Astrophys. 579, A135 (2015).

    Article  ADS  Google Scholar 

  26. Gregg, M. D. & West, M. J. Galaxy disruption as the origin of intracluster light in the Coma cluster of galaxies. Nature 396, 549–552 (1998).

    Article  ADS  Google Scholar 

  27. Cañas, R. et al. From stellar haloes to intracluster light: the physics of the intra-halo stellar component in cosmological hydrodynamical simulations. Mon. Not. R. Astron. Soc. 494, 4314–4333 (2020).

    Article  ADS  Google Scholar 

  28. Alamo-Martínez, K. A. & Blakeslee, J. P. Specific frequencies and luminosity profiles of cluster galaxies and intracluster light in Abell 1689. Astrophys. J. 849, 6 (2017).

    Article  ADS  Google Scholar 

  29. Harris, W. E. et al. The PIPER Survey. I. An initial look at the intergalactic globular cluster population in the Perseus Cluster. Astrophys. J. 890, 105 (2020).

    Article  ADS  Google Scholar 

  30. Powalka, M. et al. The Next Generation Virgo Cluster Survey (NGVS). XXXII. A search for globular cluster substructures in the Virgo galaxy cluster core. Astrophys. J. 856, 84 (2018).

    Article  ADS  Google Scholar 

  31. Madrid, J. P., O’Neill, C. R., Gagliano, A. T. & Marvil, J. R. A wide-field map of intracluster globular clusters in Coma. Astrophys. J. 867, 144 (2018).

    Article  ADS  Google Scholar 

  32. Seigar, M. S., Graham, A. W. & Jerjen, H. Intracluster light and the extended stellar envelopes of cD galaxies: an analytical description. Mon. Not. R. Astron. Soc. 378, 1575–1588 (2007).

    Article  ADS  Google Scholar 

  33. Pillepich, A. et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 475, 648–675 (2018).

    Article  ADS  Google Scholar 

  34. Rudick, C. S., Mihos, J. C. & McBride, C. K. The quantity of intracluster light: comparing theoretical and observational measurement techniques using simulated clusters. Astrophys. J. 732, 48 (2011).

    Article  ADS  Google Scholar 

  35. Burke, C., Hilton, M. & Collins, C. Coevolution of brightest cluster galaxies and intracluster light using CLASH. Mon. Not. R. Astron. Soc. 449, 2353–2367 (2015).

    Article  ADS  Google Scholar 

  36. Montes, M. & Trujillo, I. Intracluster light at the frontier—II. The frontier fields clusters. Mon. Not. R. Astron. Soc. 474, 917–932 (2018).

    Article  ADS  Google Scholar 

  37. Tang, L. et al. An investigation of intracluster light evolution using cosmological hydrodynamical simulations. Astrophys. J. 859, 85 (2018).

    Article  ADS  Google Scholar 

  38. Janowiecki, S. et al. Diffuse tidal structures in the halos of Virgo ellipticals. Astrophys. J. 715, 972–985 (2010).

    Article  ADS  Google Scholar 

  39. Giallongo, E. et al. Diffuse optical intracluster light as a measure of stellar tidal stripping: the cluster CL0024+17 at z ~ 0.4 observed at the Large Binocular Telescope. Astrophys. J. 781, 24 (2014).

    Article  ADS  Google Scholar 

  40. Morishita, T. et al. Characterizing intracluster light in the Hubble frontier fields. Astrophys. J. 846, 139 (2017).

    Article  ADS  Google Scholar 

  41. Da Rocha, C. & Mendes de Oliveira, C. Intragroup diffuse light in compact groups of galaxies: HCG 79, 88 and 95. Mon. Not. R. Astron. Soc. 364, 1069–1081 (2005).

    Article  ADS  Google Scholar 

  42. Jiménez-Teja, Y. & Dupke, R. Disentangling the ICL with the CHEFs: Abell 2744 as a case study. Astrophys. J. 820, 49 (2016).

    Article  ADS  Google Scholar 

  43. Ellien, A. et al. DAWIS: a detection algorithm with wavelets for intracluster light studies. Astron. Astrophys. 649, A38 (2021).

    Article  Google Scholar 

  44. Gonzalez, A. H., Zaritsky, D. & Zabludoff, A. I. A census of baryons in galaxy clusters and groups. Astrophys. J. 666, 147–155 (2007).

    Article  ADS  Google Scholar 

  45. Purcell, C. W., Bullock, J. S. & Zentner, A. R. Shredded galaxies as the source of diffuse intrahalo light on varying scales. Astrophys. J. 666, 20–33 (2007).

    Article  ADS  Google Scholar 

  46. Rudick, C. S., Mihos, J. C., Frey, L. H. & McBride, C. K. Tidal streams of intracluster light. Astrophys. J. 699, 1518–1529 (2009).

    Article  ADS  Google Scholar 

  47. Contini, E., De Lucia, G., Villalobos, Á. & Borgani, S. On the formation and physical properties of the intracluster light in hierarchical galaxy formation models. Mon. Not. R. Astron. Soc. 437, 3787–3802 (2014).

    Article  ADS  Google Scholar 

  48. Murante, G. et al. The importance of mergers for the origin of intracluster stars in cosmological simulations of galaxy clusters. Mon. Not. R. Astron. Soc. 377, 2–16 (2007).

    Article  ADS  Google Scholar 

  49. Conroy, C., Wechsler, R. H. & Kravtsov, A. V. The hierarchical build-up of massive galaxies and the intracluster light since z = 1. Astrophys. J. 668, 826–838 (2007).

    Article  ADS  Google Scholar 

  50. Mihos, J. C. in Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution (eds Mulchaey, J. S. et al.) 277 (Cambridge Univ. Press, 2004).

  51. Rudick, C. S., Mihos, J. C. & McBride, C. The formation and evolution of intracluster light. Astrophys. J. 648, 936–946 (2006).

    Article  ADS  Google Scholar 

  52. Contini, E. On the origin and evolution of the intra-cluster light: a brief review of the most recent developments. Galaxies 9, 60 (2021).

    Article  ADS  Google Scholar 

  53. Melnick, J., Giraud, E., Toledo, I., Selman, F. & Quintana, H. Intergalactic stellar populations in intermediate redshift clusters. Mon. Not. R. Astron. Soc. 427, 850–858 (2012).

    Article  ADS  Google Scholar 

  54. DeMaio, T., Gonzalez, A. H., Zabludoff, A., Zaritsky, D. & Bradač, M. On the origin of the intracluster light in massive galaxy clusters. Mon. Not. R. Astron. Soc. 448, 1162–1177 (2015).

    Article  ADS  Google Scholar 

  55. Iodice, E. et al. Intracluster patches of baryons in the core of the Fornax Cluster. Astrophys. J. 851, 75 (2017).

    Article  ADS  Google Scholar 

  56. Montes, M. & Trujillo, I. Intracluster light at the frontier: A2744. Astrophys. J. 794, 137 (2014).

    Article  ADS  Google Scholar 

  57. DeMaio, T. et al. Lost but not forgotten: intracluster light in galaxy groups and clusters. Mon. Not. R. Astron. Soc. 474, 3009–3031 (2018).

    Article  ADS  Google Scholar 

  58. Toledo, I. et al. Diffuse intracluster light at intermediate redshifts: intracluster light observations in an X-ray cluster at z = 0.29. Mon. Not. R. Astron. Soc. 414, 602–614 (2011).

    Article  ADS  Google Scholar 

  59. Adami, C. et al. The XXL Survey. VIII. MUSE characterisation of intracluster light in a z ~ 0.53 cluster of galaxies. Astron. Astrophys. 592, A7 (2016).

    Article  Google Scholar 

  60. Jiménez-Teja, Y. et al. Unveiling the dynamical state of massive clusters through the ICL fraction. Astrophys. J. 857, 79 (2018).

    Article  ADS  Google Scholar 

  61. Williams, B. F. et al. The metallicity distribution of intracluster stars in Virgo. Astrophys. J. 656, 756–769 (2007).

    Article  ADS  Google Scholar 

  62. Coccato, L., Gerhard, O. & Arnaboldi, M. Distinct core and halo stellar populations and the formation history of the bright Coma cluster early-type galaxy NGC 4889. Mon. Not. R. Astron. Soc. 407, L26–L30 (2010).

    Article  ADS  Google Scholar 

  63. Hartke, J. et al. The halo of M 49 and its environment as traced by planetary nebulae populations. Astron. Astrophys. 603, A104 (2017).

    Article  Google Scholar 

  64. Spavone, M. et al. VEGAS: a VST early-type galaxy survey. III. Mapping the galaxy structure, interactions, and intragroup light in the NGC 5018 group. Astrophys. J. 864, 149 (2018).

    Article  ADS  Google Scholar 

  65. Ragusa, R. et al. VEGAS: a VST early-type galaxy survey. VI. The diffuse light in HCG 86 from the ultra-deep VEGAS images. Astron. Astrophys. 651, A39 (2021).

    Article  Google Scholar 

  66. Arnaboldi, M. et al. The line-of-sight velocity distributions of intracluster planetary nebulae in the Virgo Cluster core. Astrophys. J. Lett. 614, L33–L36 (2004).

    Article  ADS  Google Scholar 

  67. Smercina, A. et al. The saga of M81: global view of a massive stellar halo in formation. Astrophys. J. 905, 60 (2020).

    Article  ADS  Google Scholar 

  68. Contini, E., Yi, S. K. & Kang, X. Theoretical predictions of colors and metallicity of the intracluster light. Astrophys. J. 871, 24 (2019).

    Article  ADS  Google Scholar 

  69. Contini, E., Yi, S. K. & Kang, X. The different growth pathways of brightest cluster galaxies and intracluster light. Mon. Not. R. Astron. Soc. 479, 932–944 (2018).

    ADS  Google Scholar 

  70. Guennou, L. et al. Intracluster light in clusters of galaxies at redshifts 0.4 < z < 0.8. Astron. Astrophys. 537, A64 (2012).

    Article  Google Scholar 

  71. Furnell, K. E. et al. The growth of intracluster light in XCS-HSC galaxy clusters from 0.1 < z < 0.5. Mon. Not. R. Astron. Soc. 502, 2419–2437 (2021).

    Article  ADS  Google Scholar 

  72. McGee, S. L., Balogh, M. L., Bower, R. G., Font, A. S. & McCarthy, I. G. The accretion of galaxies into groups and clusters. Mon. Not. R. Astron. Soc. 400, 937–950 (2009).

    Article  ADS  Google Scholar 

  73. Bahé, Y. M., McCarthy, I. G., Balogh, M. L. & Font, A. S. Why does the environmental influence on group and cluster galaxies extend beyond the virial radius? Mon. Not. R. Astron. Soc. 430, 3017–3031 (2013).

    Article  ADS  Google Scholar 

  74. Sampaio-Santos, H. et al. Is diffuse intracluster light a good tracer of the galaxy cluster matter distribution? Mon. Not. R. Astron. Soc. 501, 1300–1315 (2021).

    Article  ADS  Google Scholar 

  75. Lin, Y.-T. & Mohr, J. J. K-band properties of galaxy clusters and groups: brightest cluster galaxies and intracluster light. Astrophys. J. 617, 879–895 (2004).

    Article  ADS  Google Scholar 

  76. Murante, G. et al. The diffuse light in simulations of galaxy clusters. Astrophys. J. Lett. 607, L83–L86 (2004).

    Article  ADS  Google Scholar 

  77. Aguerri, J. A. L., Castro-Rodríguez, N., Napolitano, N., Arnaboldi, M. & Gerhard, O. Diffuse light in Hickson compact groups: the dynamically young system HCG 44. Astron. Astrophys. 457, 771–778 (2006).

    Article  ADS  Google Scholar 

  78. Da Rocha, C., Ziegler, B. L. & Mendes de Oliveira, C. Intragroup diffuse light in compact groups of galaxies—II. HCG 15, 35 and 51. Mon. Not. R. Astron. Soc. 388, 1433–1443 (2008).

    Article  ADS  Google Scholar 

  79. Spavone, M. et al. VEGAS: a VST early-type galaxy survey. II. Photometric study of giant ellipticals and their stellar halos. Astron. Astrophys. 603, A38 (2017).

    Article  Google Scholar 

  80. Poliakov, D., Mosenkov, A. V., Brosch, N., Koriski, S. & Rich, R. M. Quantified diffuse light in compact groups of galaxies. Mon. Not. R. Astron. Soc. 503, 6059–6077 (2021).

    Article  ADS  Google Scholar 

  81. Sommer-Larsen, J. Properties of intra-group stars and galaxies in galaxy groups: ‘normal’ versus ‘fossil’ groups. Mon. Not. R. Astron. Soc. 369, 958–968 (2006).

    Article  ADS  Google Scholar 

  82. Thomas, D., Maraston, C., Bender, R. & Mendes de Oliveira, C. The epochs of early-type galaxy formation as a function of environment. Astrophys. J. 621, 673–694 (2005).

    Article  ADS  Google Scholar 

  83. Trujillo, I., Ferreras, I. & de La Rosa, I. G. Dissecting the size evolution of elliptical galaxies since z ~ 1: puffing-up versus minor-merging scenarios. Mon. Not. R. Astron. Soc. 415, 3903–3913 (2011).

    Article  ADS  Google Scholar 

  84. Collins, C. A. et al. Early assembly of the most massive galaxies. Nature 458, 603–606 (2009).

    Article  ADS  Google Scholar 

  85. Lidman, C. et al. Evidence for significant growth in the stellar mass of brightest cluster galaxies over the past 10 billion years. Mon. Not. R. Astron. Soc. 427, 550–568 (2012).

    Article  ADS  Google Scholar 

  86. Zhang, Y. et al. Galaxies in X-ray selected clusters and groups in Dark Energy Survey data. I. Stellar mass growth of bright central galaxies since z~1.2. Astrophys. J. 816, 98 (2016).

    Article  ADS  Google Scholar 

  87. De Lucia, G. & Blaizot, J. The hierarchical formation of the brightest cluster galaxies. Mon. Not. R. Astron. Soc. 375, 2–14 (2007).

    Article  ADS  Google Scholar 

  88. Laporte, C. F. P., White, S. D. M., Naab, T. & Gao, L. The growth in size and mass of cluster galaxies since z = 2. Mon. Not. R. Astron. Soc. 435, 901–909 (2013).

    Article  ADS  Google Scholar 

  89. Montes, M. The intracluster light and its role in galaxy evolution in clusters. Preprint at https://arxiv.org/abs/1912.01616 (2019).

  90. Gao, L., White, S. D. M., Jenkins, A., Stoehr, F. & Springel, V. The subhalo populations of ΛCDM dark haloes. Mon. Not. R. Astron. Soc. 355, 819–834 (2004).

    Article  ADS  Google Scholar 

  91. Gonzalez, A. H., Sivanandam, S., Zabludoff, A. I. & Zaritsky, D. Galaxy cluster baryon fractions revisited. Astrophys. J. 778, 14 (2013).

    Article  ADS  Google Scholar 

  92. DeMaio, T. et al. The growth of brightest cluster galaxies and intracluster light over the past 10 billion years. Mon. Not. R. Astron. Soc. 491, 3751–3759 (2020).

    Article  ADS  Google Scholar 

  93. Zhang, Y. et al. Dark Energy Survey year 1 results: detection of intracluster light at redshift ~ 0.25. Astrophys. J. 874, 165 (2019).

    Article  ADS  Google Scholar 

  94. Chen, X., Zu, Y., Shao, Z. & Shan, H. The sphere of influence of the bright central galaxies in the diffuse light of SDSS Clusters. Preprint at https://arxiv.org/abs/2112.03934 (2021).

  95. Gonzalez, A. H. et al. Discovery of a possible splashback feature in the intracluster light of MACS J1149.5+2223. Mon. Not. R. Astron. Soc. 507, 963–970 (2021).

    Article  ADS  Google Scholar 

  96. Shin, T.-h et al. The ellipticity of galaxy cluster haloes from satellite galaxies and weak lensing. Mon. Not. R. Astron. Soc. 475, 2421–2437 (2018).

    Article  ADS  Google Scholar 

  97. Dubinski, J. The origin of the brightest cluster galaxies. Astrophys. J. 502, 141–149 (1998).

    Article  ADS  Google Scholar 

  98. Pillepich, A. et al. Halo mass and assembly history exposed in the faint outskirts: the stellar and dark matter haloes of Illustris galaxies. Mon. Not. R. Astron. Soc. 444, 237–249 (2014).

    Article  ADS  Google Scholar 

  99. Montes, M. & Trujillo, I. Intracluster light: a luminous tracer for dark matter in clusters of galaxies. Mon. Not. R. Astron. Soc. 482, 2838–2851 (2019).

    Article  ADS  Google Scholar 

  100. Alonso Asensio, I., Dalla Vecchia, C., Bahé, Y. M., Barnes, D. J. & Kay, S. T. The intracluster light as a tracer of the total matter density distribution: a view from simulations. Mon. Not. R. Astron. Soc. 494, 1859–1864 (2020).

    Article  ADS  Google Scholar 

  101. Jee, M. J. Tracing the peculiar dark matter structure in the galaxy cluster Cl 0024+17 with intracluster stars and gas. Astrophys. J. 717, 420–434 (2010).

    Article  ADS  Google Scholar 

  102. Jauzac, M. et al. The extraordinary amount of substructure in the Hubble Frontier Fields cluster Abell 2744. Mon. Not. R. Astron. Soc. 463, 3876–3893 (2016).

    Article  ADS  Google Scholar 

  103. Deason, A. J. et al. Stellar splashback: the edge of the intracluster light. Mon. Not. R. Astron. Soc. 500, 4181–4192 (2021).

    Article  ADS  Google Scholar 

  104. Diemer, B. & Kravtsov, A. V. Dependence of the outer density profiles of halos on their mass accretion rate. Astrophys. J. 789, 1 (2014).

    Article  ADS  Google Scholar 

  105. Zibetti, S., White, S. D. M., Schneider, D. P. & Brinkmann, J. Intergalactic stars in z ~ 0.25 galaxy clusters: systematic properties from stacking of Sloan Digital Sky Survey imaging data. Mon. Not. R. Astron. Soc. 358, 949–967 (2005).

    Article  ADS  Google Scholar 

  106. Burke, C., Collins, C. A., Stott, J. P. & Hilton, M. Measurement of the intracluster light at z ~ 1. Mon. Not. R. Astron. Soc. 425, 2058–2068 (2012).

    Article  ADS  Google Scholar 

  107. Adami, C., Durret, F., Guennou, L. & Da Rocha, C. Diffuse light in the young cluster of galaxies CL J1449+0856 at z = 2.07. Astron. Astrophys. 551, A20 (2013).

    Article  Google Scholar 

  108. Ko, J. & Jee, M. J. Evidence for the existence of abundant intracluster light at z = 1.24. Astrophys. J. 862, 95 (2018).

    Article  ADS  Google Scholar 

  109. Brough, S. et al. The Vera Rubin Observatory Legacy Survey of space and time and the low surface brightness Universe. Preprint at https://arxiv.org/abs/2001.11067 (2020).

  110. Aihara, H. et al. First data release of the Hyper Suprime-Cam Subaru Strategic Program. Publ. Astron. Soc. Jpn 70, S8 (2018).

    Article  MathSciNet  Google Scholar 

  111. Aihara, H. et al. Second data release of the Hyper Suprime-Cam Subaru Strategic Program. Publ. Astron. Soc. Jpn 71, 114 (2019).

    Article  ADS  Google Scholar 

  112. Sandin, C. The influence of diffuse scattered light. I. The PSF and its role in observations of the edge-on galaxy NGC 5907. Astron. Astrophys. 567, A97 (2014).

    Article  ADS  Google Scholar 

  113. Trujillo, I. & Fliri, J. Beyond 31 mag arcsec−2: the frontier of low surface brightness imaging with the largest optical telescopes. Astrophys. J. 823, 123 (2016).

    Article  ADS  Google Scholar 

  114. Duc, P.-A. et al. The ATLAS3D project – XXIX. The new look of early-type galaxies and surrounding fields disclosed by extremely deep optical images. Mon. Not. R. Astron. Soc. 446, 120–143 (2015).

    Article  ADS  Google Scholar 

  115. Román, J., Trujillo, I. & Montes, M. Galactic cirri in deep optical imaging. Astron. Astrophys. 644, A42 (2020).

    Article  ADS  Google Scholar 

  116. Borlaff, A. S. et al. Euclid preparation: XVI. Exploring the ultra low-surface brightness Universe with Euclid/VIS. Astron. Astrophys. 657, 21 (2022).

    Google Scholar 

  117. Hou, M., Li, Z., Peng, E. W. & Liu, C. Chandra detection of intracluster X-ray sources in Virgo. Astrophys. J. 846, 126 (2017).

    Article  ADS  Google Scholar 

  118. Jin, X., Hou, M., Zhu, Z. & Li, Z. Chandra detection of intracluster X-ray sources in Fornax. Astrophys. J. 876, 53 (2019).

    Article  ADS  Google Scholar 

  119. Finoguenov, A., Kudritzki, R. P. & Jones, C. Probing the intracluster star-light with Chandra. Astron. Astrophys. 387, L10–L12 (2002).

    Article  ADS  Google Scholar 

  120. Peacock, M. B. et al. Evidence for a constant initial mass function in early-type galaxies based on their x-ray binary populations. Astrophys. J. 784, 162 (2014).

    Article  ADS  Google Scholar 

  121. Feldmeier, J. J. et al. Deep CCD surface photometry of galaxy clusters. II. Searching for intracluster starlight in non-cD clusters. Astrophys. J. 609, 617–637 (2004).

    Article  ADS  Google Scholar 

  122. Presotto, V. et al. Intracluster light properties in the CLASH-VLT cluster MACS J1206.2-0847. Astron. Astrophys. 565, A126 (2014).

    Article  Google Scholar 

  123. Spavone, M. et al. The Fornax Deep Survey with VST. VIII. Connecting the accretion history with the cluster density. Astron. Astrophys. 639, A14 (2020).

    Article  Google Scholar 

  124. Iodice, E. et al. VEGAS: a VST early-type galaxy survey. V. IC 1459 group: mass assembly history in low-density environments. Astron. Astrophys. 635, A3 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

I thank M. Kluge for kindly providing the ICL fractions in ref. 10, L. Tang for the ICL fraction predictions in ref. 37, T. Morishita for the ICL map of Abell S1063 in ref. 40 and I. Trujillo for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireia Montes.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Zhiyuan Li, Enrichetta Iodice and Chris Mihos for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montes, M. The faint light in groups and clusters of galaxies. Nat Astron 6, 308–316 (2022). https://doi.org/10.1038/s41550-022-01616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01616-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing