Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low tropical diversity during the adaptive radiation of early land plants

Abstract

The latitudinal biodiversity gradient, with tropical regions acting as ‘evolutionary cradles’, is a cornerstone of current biogeographical and ecological theory1. In the modern world floral biodiversity and biomass are overwhelmingly concentrated in the tropics, and it is often assumed that the tropics were evolutionary cradles throughout land plant evolutionary history. For example, the origination and diversification of angiosperms is believed to have taken place in the Cretaceous tropics2 and modern gymnosperms in the Permian tropics3. Here, we show that during the first major diversification of land plants, in the Late Silurian–Early Devonian, land plant biodiversity was much lower at the equator compared to medium-high southern latitudes. Throughout this crucial interval of plant evolution, tropical vegetation remained depauperate and of very low taxonomic biodiversity, although with similar morphological disparity to the more diverse higher latitude floras. Possible explanations for this low tropical floral biodiversity include palaeocontinental configuration or adverse palaeotropical environmental conditions. We discount the possibility that it was simply a fortuitous feature of the biogeographical spread of the earliest vascular land plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geology of the Lochkovian Red Bay Group of Spitsbergen.
Fig. 2: Dispersed spores and plant megafossils from the Red Bay Group of Spitsbergen.

Similar content being viewed by others

Data availability

All data are available from the corresponding author.

References

  1. Gaston, K. J. Global patterns of biodiversity. Nature 405, 220–227 (2000).

    Article  CAS  Google Scholar 

  2. Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).

  3. Blomenkemper, P. et al. A hidden cradle of plant evolution in Permian tropical lowlands. Science 362, 1414–1416 (2018).

    Article  CAS  Google Scholar 

  4. Kenrick, P. & Crane, P. R. The Origin and Early Diversification of Land Plants: A Cladistic Study (Smithsonian Institution Scholarly Press, 1997).

  5. Puttick, M. N. et al. The interrelationships of land plants and the nature of the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).

    Article  CAS  Google Scholar 

  6. Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, 2274–2283 (2018).

    Article  Google Scholar 

  7. Wellman, C. H., Steemans, P. & Vecoli, M. in Early Palaeozoic Biogeography and Palaeogeography (eds Harper, D. & Servais, T.) Ch. 29 (Geological Society of London, 2014).

  8. Edwards, D. et al. Piecing together the eophytes—a new group of ancient plants containing cryptospores. New Phytol. 233, 1440–1455 (2021).

    Article  Google Scholar 

  9. Gray, J. The microfossil record of early land plants; advances in understanding of early terrestrialization, 1970–1984. Philos. Trans. R. Soc. Lond. B 309, 167–195 (1985).

    Article  Google Scholar 

  10. Wellman, C. H. Cryptospores from the type area for the Caradoc Series (Ordovician) in southern Britain. Palaeontology 55, 103–136 (1996).

    Google Scholar 

  11. Torsvik, T. H. & Cocks, L. R. M. Earth History and Palaeogeography (Cambridge Univ. Press, 2017).

  12. Harland, W. B. The Geology of Svalbard (Geological Society of London, 1997).

  13. Davies, N. S., Berry, C. M., Marshall, J. E. A., Wellman, C. H. & Lindemann, F.-J. The Devonian landscape factory: plant–sediment interactions in the Old Red Sandstone of Svalbard and the rise of vegetation as a biogeomorphic agent. J. Geol. Soc. Lond. https://doi.org/10.1144/jgs2020-225 (2021).

  14. Blieck, A., Goujet, D. & Janvier, P. The vertebrate stratigraphy of the Lower Devonian (Red Bay Group and Wood Bay Formation) of Spitsbergen. Mod. Geol. 11, 197–217 (1987).

    Google Scholar 

  15. Blom, H. & Goujet, D. Thelodont scales from the Lower Devonian Red Bay Group, Spitsbergen. Palaeontology 45, 795–820 (2002).

    Article  Google Scholar 

  16. Pernègre, V. N. & Blieck, A. A revised heterostrachan-cased ichthyostratigraphy of the Wood Bay Formation (Lower Devonian, Spitsbergen), and correlation with Russian Arctic archipelagos. Geodiversitas 38, 5–20 (2016).

    Article  Google Scholar 

  17. Wellman, C. H. & Richardson, J. B. Sporomorph assemblages from the ‘Lower Old Red Sandstone’ of Lorne Scotland. Spec. Pap. Palaeontol. 55, 41–101.

  18. Richardson J. B. Taxonomy and classification of some new Early Devonian cryptospores from England. Spec. Pap. Palaeontol. 55, 7–40 (1996).

  19. Steemans, P. Etude palynostratgraphique du Devonian Inferieur dans l’Ouest de l’Europe. Mém. Soc. Géol. Minér. Bretagne 27, 1–453 (1989).

    Google Scholar 

  20. Rodriguez, R. M. Palinologia de las Formaciones del Silurico Superior-Devonico Inferior de la Cordillera Cantabrica, Noroeste de España (Institución Fray Bernardino de Sahagún, de la Excelentísima Diputación provincial de León y del Servicio de Publicaciones de la Universidad de León, 1983).

  21. Richardson, J. B., Rodriguez, R. M. & Sutherland, S. J. E. Palynological zonation of Mid-Palaeozoic sequences from the Cantabrian Mountains, NW Spain: implications for inter-regional and interfacies correlation of the Ludfor/Pridoli and Silurian/Devonian boundaries, and plant dispersal patterns. Bull. Nat. Hist. Mus. Lond. 57, 115–162 (2001).

    Google Scholar 

  22. Rubinstein, C. & Steemans, P. Miospore assemblages from the Silurian–Devonian boundary, in borehole A1–61, Ghadames Basin, Libya. Rev. Palaeobot. Palynol. 118, 397–412 (2002).

    Article  Google Scholar 

  23. Spina, A. & Vecoli, M. Palynostratigraphy and vegetational change in the Siluro-Devonian of the Ghadamis basin, North Africa. Palaeogeog. Palaeoclimatol. Palaeoecol. 282, 1–18 (2009).

    Article  Google Scholar 

  24. Hao, S. G. & Gensel, P. G. in Plants Invade the Land (eds Gensel, P. G. & Edwards, D.) 103–119 (Columbia Univ. Press, 2001).

  25. Wellman, C. H. et al. Spore assemblages from the Lower Devonian Xujiachong Formation from Qujing, Yunnan, China. Palaeontology 55, 583–611 (2012).

    Article  Google Scholar 

  26. Hao, S. & Xue, J. The Early Devonian Posongchong Flora of Yunnan (Science Press, 2013).

  27. Edwards, D., & Li, C.-S. Further insights into the Lower Devonian terrestrial vegetation of Sichuan Province, China. Rev. Palaeobot. Palynol. 253, 37–48 (2018).

    Article  Google Scholar 

  28. Gao, L. Early Devonian spore and acritarchs from the Guijiatum Formation of Qujing, China. Bull. Inst. Geol. Chin. Acad. Sci. 9, 125–136 (1984).

    Google Scholar 

  29. Tian, J. et al. Late Silurian to early Devonian palynomorphs from Qujing, Yunnan, southwest China. Acta Geol. Sin. 85, 559–568 (2011).

    Article  Google Scholar 

  30. Høeg, O. A. The Downtonian and Dittonian flora of Spitsbergen. Skr. Svalbard Ishavet 83, 1–229 (1942).

    Google Scholar 

  31. Morris, J. L., Edwards, D. & Richardson, J. B. in Transformative Paleobotany (eds Krings, M. et al.) 49–67 (Academic Press, 2018).

  32. McSweeney, F. R., Shimeta, J. & Buckeridge, J. St. J. S. Two new genera of early Tracheophyta (Zosterophyllaceae) from the upper Silurian–Lower Devonian of Victoria, Australia. Alcheringa https://doi.org/10.1080/03115518.2020.1744725 (2020).

  33. Xue, J. H. et al. Silurian–Devonian terrestrial revolution in South China: taxonomy, diversity, and character evolution of vascular plants in a paleogeographically isolated low-latitude region. Earth Sci. Rev. 180, 92–125 (2018).

    Article  Google Scholar 

  34. Hao, S. G. et al. Zosterophyllum Penhallow around the Silurian–Devonian boundary of northeastern Yunnan, China. Int. J. Plant Sci. 168, 477–489 (2007).

    Article  Google Scholar 

  35. Hao, S. G. et al. Earliest rooting system and root: shoot ratio from a new Zosterophyllum plant. New Phytol. 185, 217–225 (2009).

    Article  Google Scholar 

  36. Xue, J.-Z. Two zosterophyll plants from the Lower Devonian (Lochkovian) Xitun Formation of northeastern Yunnan, China. Acta Geol. Sin. 83, 504–512 (2009).

    Article  Google Scholar 

  37. Xue, J.-Z. Lochkovian plants from the Xitun Formation of Yunnan, China and their palaeophytogeographical significance. Geol. Mag. 149, 333–344 (2012).

    Article  Google Scholar 

  38. Sun, Y. et al. Lethally high temperatures during the early Triassic greenhouse. Science 6105, 366–370 (2012).

    Article  Google Scholar 

  39. Meng, X. Y. & Gai, Z. K. Falxcornus, a new genus of Tridensaspidae (Galeaspida, stem-Gnathostomata) from the Lower Devonian in Qujing, Yunnan, China. Hist. Biol. https://doi.org/10.1080/08912963.2021.1952198 (2021).

  40. Traverse, A. Paleopalynology 2nd edn (Springer, 2007).

Download references

Acknowledgements

The 2018 expedition to northern Spitsbergen was funded by National Geographic Society grant CP-131R-17. We thank the Governor of Svalbard for permission to undertake the fieldwork (RiS-ID 10970).

Author information

Authors and Affiliations

Authors

Contributions

C.M.B., N.D., F.-J.L., J.E.A.M. and C.H.W. participated in the expedition to northern Spitsbergen and were involved in geological–stratigraphical–sedimentological interpretation and collecting samples for palynological/palaeobotanical analysis. C.H.W. undertook the palynological research and created the spore diversity and disparity database. C.M.B. and A.W. undertook the palaeobotanical research. All authors contributed to the design of the project, the interpretation of the data and the writing of the manuscript.

Corresponding author

Correspondence to Charles H. Wellman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Alexander Hetherington and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Tables 11-13 and references.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–10 giving spore diversity and disparity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wellman, C.H., Berry, C.M., Davies, N.S. et al. Low tropical diversity during the adaptive radiation of early land plants. Nat. Plants 8, 104–109 (2022). https://doi.org/10.1038/s41477-021-01067-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-01067-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing