Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AAV-vectored expression of monospecific or bispecific monoclonal antibodies protects mice from lethal Pseudomonas aeruginosa pneumonia

Abstract

Pseudomonas aeruginosa poses a significant threat to immunocompromised individuals and those with cystic fibrosis. Treatment relies on antibiotics, but persistent infections occur due to intrinsic and acquired resistance of P. aeruginosa towards multiple classes of antibiotics. To date, there are no licensed vaccines for this pathogen, prompting the urgent need for novel treatment approaches to combat P. aeruginosa infection and persistence. Here we validated AAV vectored immunoprophylaxis as a strategy to generate long-term plasma and mucosal expression of highly protective monoclonal antibodies (mAbs) targeting the exopolysaccharide Psl (Cam-003) and the PcrV (V2L2MD) component of the type-III secretion system injectosome either as single mAbs or together as a bispecific mAb (MEDI3902) in a mouse model. When administered intramuscularly, AAV-αPcrV, AAV-αPsl, and AAV-MEDI3902 significantly protected mice challenged intranasally with a lethal dose of P. aeruginosa strains PAO1 and PA14 and reduced bacterial burden and dissemination to other organs. While all AAV-mAbs provided protection, AAV-αPcrV and AAV-MEDI3902 provided 100% and 87.5% protection from a lethal challenge with 4.47 × 107 CFU PAO1 and 87.5% and 75% protection from a lethal challenge with 3 × 107 CFU PA14, respectively. Serum concentrations of MEDI3902 were ~10× lower than that of αPcrV, but mice treated with this vector showed a greater reduction in bacterial dissemination to the liver, lung, spleen, and blood compared to other AAV-mAbs. These results support further investigation into the use of AAV vectored immunoprophylaxis to prevent and treat P. aeruginosa infections and other bacterial pathogens of public health concern for which current treatment strategies are limited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AAV-αPcrV and AAV-αPsl mAb expression kinetics in the blood and bronchoalveolar lavage fluid (BALF) of transduced mice and confirmation of functional binding to P. aeruginosa.
Fig. 2: In vitro analysis of AAV6.2FF vectors expressing AAV-GFP-WPRE, AAV-GFP-WPRE3 or AAV-GFP (without a WPRE).
Fig. 3: Kinetic analysis and functional binding of AAV-expressed P. aeruginosa bispecific mAb, MEDI3902.
Fig. 4: AAV6.2FF-mAbs confer significant protection in two lethal P. aeruginosa pneumonia challenge models.
Fig. 5: AAV-αPcrV + AAV-αPsl and AAV-MEDI3902 provide excellent protection in the prevention of bacterial burden in the lungs and dissemination to other organs, while AAV-αPcrV and AAV-αPsl provide moderate protection.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study can be found within the published article and its supplementary files.

References

  1. Croughs PD, Li B, Hoogkamp-Korstanje JA, Stobberingh E, Group ARS. Thirteen years of antibiotic susceptibility surveillance of Pseudomonas aeruginosa from intensive care units and urology services in The Netherlands. Eur J Clin Microbiol Infect Dis. 2013;32:283–8.

    Article  CAS  PubMed  Google Scholar 

  2. Gerver SM, Nsonwu O, Thelwall S, Brown CS, Hope R. Trends in rates of incidence, fatality and antimicrobial resistance among isolates of Pseudomonas spp. causing bloodstream infections in England between 2009 and 2018: results from a national voluntary surveillance scheme. J Hosp Infect. 2022;120:73–80.

    Article  CAS  PubMed  Google Scholar 

  3. Ng QX, Ong NY, Lee DYX, Yau CE, Lim YL, Kwa ALH, et al. Trends in Pseudomonas aeruginosa (P. aeruginosa) bacteremia during the COVID-19 pandemic: a systematic review. Antibiotics. 2023;12:409.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22:582–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harris AA, Goodman L, Levin S. Community-acquired Pseudomonas aeruginosa pneumonia associated with the use of a home humidifier. West J Med. 1984;141:521–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2005;171:1209–23.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reig S, Le Gouellec A, Bleves S. What is new in the anti–Pseudomonas aeruginosa clinical development pipeline since the 2017 WHO alert? Front Cell Infect Microbiol. 2022;12:909731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sindeldecker D, Stoodley P. The many antibiotic resistance and tolerance strategies of Pseudomonas aeruginosa. Biofilm. 2021;3:100056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lyu J, Chen H, Bao J, Liu S, Chen Y, Cui X, et al. Clinical distribution and drug resistance of Pseudomonas aeruginosa in Guangzhou, China from 2017 to 2021. J Clin Med. 2023;12:1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32:e00031–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thaden JT, Park LP, Maskarinec SA, Ruffin F, Fowler VG, van Duin D. Results from a 13-year prospective cohort study show increased mortality associated with bloodstream infections caused by Pseudomonas aeruginosa compared to other bacteria. Antimicrob Agents Chemother. 2017;61:e02671–16.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Micek ST, Welch EC, Khan J, Pervez M, Doherty JA, Reichley RM, et al. Resistance to empiric antimicrobial treatment predicts outcome in severe sepsis associated with Gram-negative bacteremia. J Hosp Med. 2011;6:405–10.

    Article  PubMed  Google Scholar 

  13. Williams FN, Herndon DN, Hawkins HK, Lee JO, Cox RA, Kulp GA, et al. The leading causes of death after burn injury in a single pediatric burn center. Crit Care. 2009;13:R183.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Graham BS, Ambrosino DM. History of passive antibody administration for prevention and treatment of infectious diseases. Curr Opin HIV AIDS. 2015;10:129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Casadevall A, Pirofski LA, Joyner MJ. The principles of antibody therapy for infectious diseases with relevance for COVID-19. mBio. 2021;12:e03372–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seixas AMM, Sousa SA, Leitão JH. Antibody-based immunotherapies as a tool for tackling multidrug-resistant bacterial infections. Vaccines. 2022;10:1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Motley MP, Banerjee K, Fries BC. Monoclonal antibody-based therapies for bacterial infections. Curr Opin Infect Dis. 2019;32:210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DiGiandomenico A, Keller AE, Gao C, Rainey GJ, Warrener P, Camara MM, et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci Transl Med. 2014;6:262ra155.

    Article  PubMed  Google Scholar 

  19. Wei J, Yang Y, Wang G, Liu M. Current landscape and future directions of bispecific antibodies in cancer immunotherapy. Front Immunol. 2022;13:1035276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017;9:182–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rghei AD, van Lieshout LP, Cao W, He S, Tierney K, Lopes JA, et al. Adeno-associated virus mediated expression of monoclonal antibody MR191 protects mice against Marburg virus and provides long-term expression in sheep. Gene Ther. 2022; https://doi.org/10.1038/s41434-022-00361-2.

  22. Hinderer C, Bell P, Louboutin JP, Zhu Y, Yu H, Lin G, et al. Neonatal systemic AAV induces tolerance to CNS gene therapy in MPS I dogs and nonhuman primates. Mol Ther. 2015;23:1298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van den Berg FT, Makoah NA, Ali SA, Scott TA, Mapengo RE, Mutsvunguma LZ, et al. AAV-mediated expression of broadly neutralizing and vaccine-like antibodies targeting the HIV-1 Envelope V2 region. Mol Ther Methods Clin Dev. 2019;14:100–12.

    Article  PubMed  PubMed Central  Google Scholar 

  24. van Lieshout LP, Soule G, Sorensen D, Frost KL, He S, Tierney K, et al. Intramuscular adeno-associated virus-mediated expression of monoclonal antibodies provides 100% protection against Ebola virus infection in mice. J Infect Dis. 2018;217:916–25.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Balazs AB, Ouyang Y, Hong CM, Chen J, Nguyen SM, Rao DS, et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med. 2014;20:296–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balazs AB, Bloom JD, Hong CM, Rao DS, Baltimore D. Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nat Biotechnol. 2013;31:647–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guilleman MM, Stevens BAY, Van Lieshout LP, Rghei AD, Pei Y, Santry LA, et al. AAV-mediated delivery of actoxumab and bezlotoxumab results in serum and mucosal antibody concentrations that provide protection from C. difficile toxin challenge. Gene Ther. 2023;30:455–62.

    Article  CAS  PubMed  Google Scholar 

  28. Deal C, Balazs AB, Espinosa DA, Zavala F, Baltimore D, Ketner G. Vectored antibody gene delivery protects against Plasmodium falciparum sporozoite challenge in mice. Proc Natl Acad Sci USA. 2014;111:12528–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Welles HC, Jennewein MF, Mason RD, Narpala S, Wang L, Cheng C, et al. Vectored delivery of anti-SIV envelope targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal swarm SIVsmE660 challenge. PLoS Pathog. 2018;14:e1007395.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rghei AD, Cao W, He S, Lopes JA, Zielinska N, Pei Y, et al. AAV-vectored expression of Marburg virus-neutralizing antibody MR191 provides complete protection from challenge in a guinea pig model. J Infect Dis. 2023;228:S682–S690.

    Article  PubMed  Google Scholar 

  31. Rghei AD, Yates JGE, Lopes JA, Zhan X, Guilleman MM, Pei Y, et al. Antibody-based protection against respiratory syncytial virus in mice and their offspring through vectored immunoprophylaxis. Gene Ther. 2023. https://doi.org/10.1038/s41434-023-00385-2. Online ahead of print.

  32. Milla CE, Chmiel JF, Accurso FJ, VanDevanter DR, Konstan MW, Yarranton G, et al. Anti-PcrV antibody in cystic fibrosis: a novel approach targeting Pseudomonas aeruginosa airway infection. Pediatr Pulmonol. 2014;49:650–8.

    Article  PubMed  Google Scholar 

  33. DiGiandomenico A, Warrener P, Hamilton M, Guillard S, Ravn P, Minter R, et al. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. J Exp Med. 2012;209:1273–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fang J, Qian JJ, Yi S, Harding TC, Tu GH, VanRoey M, et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol. 2005;23:584–90.

    Article  CAS  PubMed  Google Scholar 

  35. Choi JH, Yu NK, Baek GC, Bakes J, Seo D, Nam HJ, et al. Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in neurons. Mol Brain. 2014;7:17.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rghei AD, Stevens BAY, Thomas SP, Yates JGE, McLeod BM, Karimi K, et al. Production of adeno-associated virus vectors in cell stacks for preclinical studies in large animal models. J Vis Exp. 2021;30. https://doi.org/10.3791/62727.

  37. Lopes JA, Rghei AD, Thompson B, Susta L, Khursigara CM, Wootton SK. Overcoming barriers to preventing and treating P. aeruginosa infections using AAV vectored immunoprophylaxis. Biomedicines 2022;10:3162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murphy AJ, Macdonald LE, Stevens S, Karow M, Dore AT, Pobursky K, et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci USA. 2014;111:5153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Warrener P, Varkey R, Bonnell JC, DiGiandomenico A, Camara M, Cook K, et al. A novel anti-PcrV antibody providing enhanced protection against Pseudomonas aeruginosa in multiple animal infection models. Antimicrob Agents Chemother. 2014;58:4384–91.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tshiani Mbaya O, Mukumbayi P, Mulangu S. Review: insights on current FDA-approved monoclonal antibodies against Ebola virus infection. Front Immunol. 2021;12:721328.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bennett A, Mietzsch M, Agbandje-McKenna M. Understanding capsid assembly and genome packaging for adeno-associated viruses. Future Virol. 2017;12:283–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tabor DE, Oganesyan V, Keller AE, Yu L, McLaughlin RE, Song E, et al. Pseudomonas aeruginosa PcrV and Psl, the molecular targets of bispecific antibody MEDI3902, are conserved among diverse global clinical isolates. J Infect Dis. 2018;218:1983–94.

    CAS  PubMed  Google Scholar 

  43. Ali SO, Yu XQ, Robbie GJ, Wu Y, Shoemaker K, Yu L, et al. Phase 1 study of MEDI3902, an investigational anti-Pseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin Microbiol Infect. 2019;25:629.e1–629.e6.

    Article  CAS  PubMed  Google Scholar 

  44. Chastre J, François B, Bourgeois M, Komnos A, Ferrer R, Rahav G, et al. Safety, efficacy, and pharmacokinetics of gremubamab (MEDI3902), an anti-Pseudomonas aeruginosa bispecific human monoclonal antibody, in P. aeruginosa-colonised, mechanically ventilated intensive care unit patients: a randomised controlled trial. Crit Care. 2022;26:355.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pletzer D, Mansour SC, Wuerth K, Rahanjam N, Hancock RE. New mouse model for chronic infections by Gram-negative bacteria enabling the study of anti-infective efficacy and host-microbe interactions. mBio. 2017;8:e00140–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mikkelsen H, McMullan R, Filloux A. The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS ONE. 2011;6:e29113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grace A, Sahu R, Owen DR, Dennis VA. Pseudomonas aeruginosa reference strains PAO1 and PA14: a genomic, phenotypic, and therapeutic review. Front Microbiol. 2022;13:1023523.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vázquez-Martínez ER, García-Gómez E, Camacho-Arroyo I, González-Pedrajo B. Sexual dimorphism in bacterial infections. Biol Sex Differ. 2018;9:27.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Powell SK, Rivera-Soto R, Gray SJ. Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov Med. 2015;19:49–57.

    PubMed  PubMed Central  Google Scholar 

  50. Neuber T, Frese K, Jaehrling J, Jäger S, Daubert D, Felderer K, et al. Characterization and screening of IgG binding to the neonatal Fc receptor. MAbs. 2014;6:928–42.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Faure E, Kwong K, Nguyen D. Pseudomonas aeruginosa in chronic lung infections: how to adapt within the host? Front Immunol. 2018;9:2416.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kadioglu A, Cuppone AM, Trappetti C, List T, Spreafico A, Pozzi G, et al. Sex-based differences in susceptibility to respiratory and systemic pneumococcal disease in mice. J Infect Dis. 2011;204:1971–9.

    Article  CAS  PubMed  Google Scholar 

  53. Sabikunnahar B, Lahue KG, Asarian L, Fang Q, McGill MM, Haynes L, et al. Sex differences in susceptibility to influenza A virus infection depend on host genotype. PLoS ONE. 2022;17:e0273050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Geurs TL, Hill EB, Lippold DM, French AR. Sex differences in murine susceptibility to systemic viral infections. J Autoimmun. 2012;38:J245–53.

    Article  CAS  PubMed  Google Scholar 

  55. Rghei AD, van Lieshout LP, McLeod BM, Pei Y, Lopes JA, Zielinska N, et al. Safety and tolerability of the adeno-associated virus vector, AAV6.2FF, expressing a monoclonal antibody in murine and ovine animal models. Biomedicines. 2021;9:1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van Lieshout LP, Rghei AD, Cao W, He S, Soule G, Zhu W, et al. AAV-monoclonal antibody expression protects mice from Ebola virus without impeding the endogenous antibody response to heterologous challenge. Mol Ther Methods Clin Dev. 2022;26:505–18.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discover Grant (grant #499834), the Canadian Institutes of Health Research (CIHR) (grant # 202109PJ4-474300-VVP-CEHA-140973 to SKW and PJT 156111 to CMK), Mason Research Fund (grant #44610), and Cystic Fibrosis Canada (grant #1145528). Stipend support was provided by the Ontario Veterinary College (OVC) (JAL, JGEY, ESBC, ADR, BAYS), the Ontario Graduate Scholarship program (JGEY, MMG), the NSERC Postgraduate Scholarship-Doctoral program (JGEY, BAYS). We thank the technicians at the University of Guelph Animal Isolation Unit for their animal care services.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JAL and SKW; methodology, JAL produced the vector and executed the study designs; NEG provided all bacterial samples and completed CFU enumeration for biodistribution study; JAL and JGEY ran flow cytometric analysis; JAL, NEG YP, JGEY, ESBC, MMG, MEH, ADR and BAYS assisted with vector cloning, animal work and/or data analysis. Writing-original draft preparation, JAL; writing-review and editing, MMG, BT, CMK, LS, and SKW; supervision, CMK, and SKW; funding acquisition, SKW. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sarah K. Wootton.

Ethics declarations

Competing interests

SKW is an inventor on a US patent for the AAV6.2FF capsid. This patent (US20190216949) is licensed to Avamab Pharma Inc., where BT and SKW are co-founders and BT serves as an executive. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Ethical approval

This study was conducted according to the guidelines set forth by the Canadian Council on Animal Care (CCAC) and approved by the Animal Care Committee of the University of Guelph (Animal Use Protocol number 4664).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, J.A., Garnier, N.E., Pei, Y. et al. AAV-vectored expression of monospecific or bispecific monoclonal antibodies protects mice from lethal Pseudomonas aeruginosa pneumonia. Gene Ther (2024). https://doi.org/10.1038/s41434-024-00453-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41434-024-00453-1

Search

Quick links