Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evaluation of optical coherence tomography biomarkers to differentiate favourable and unfavourable responders to intravitreal anti-vascular endothelial growth factor treatment in retinopathy of prematurity

Abstract

Objective

Evaluation of optical coherence tomography biomarkers in predicting treatment response to intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) Bevacizumab, in aggressive retinopathy of prematurity (A-ROP).

Methods

Non-contact ultra-widefield (NC-UWF) fundus imaging with integrated UWF guided swept source Optical coherence tomography (SS-OCT) was performed prospectively in preterm babies before and after intravitreal anti-VEGF (Bevacizumab) monotherapy. OCT biomarkers were analysed in eyes that reached complete vascularization versus others.

Results

Eyes with retinal vessels reaching near ora serrata were labelled as regressed ROP and vascularised retina (Group1). Eyes with reactivation of ROP needing laser or vitreoretinal surgery or eyes with peripheral avascular retina (PAR) at 16th week post-injection were considered as Group 2. Pre-injection baseline OCT showed a hyperreflectivity of inner retinal layers in 12 out of 46 eyes in Group 1 versus 30 out of 34 eyes in Group 2 (p value 0.002). None of the eyes in Group 1 showed choroidal thinning at posterior pole as compared to 14 out of 34 eyes in Group 2 (p value 0.001). Intraretinal hypo reflective Cystic changes at fovea were seen in 16 out of 46 eyes in Group 1 and 2 out of 34 eyes in Group 2 (p value 0.012).

Conclusion

Pre-injection swept source OCT biomarkers could predict the treatment outcomes of anti-VEGF (Bevacizumab) monotherapy in A-ROP eyes. Hyperreflectivity of inner retinal layers and choroidal thinning had poorer and unpredictable response to anti-VEGF injection whereas, cystic changes at fovea predicted favourable response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The babies were covered with warm clothing and held in the modified ‘flying baby position’, with one arm supporting the chest/chin and the other hand supporting the head.
Fig. 2
Fig. 3: Evaluation of optical coherence tomography (OCT) biomarkers.
Fig. 4: Evaluation of optical coherence tomography (OCT) biomarkers.
Fig. 5: Evaluation of optical coherence tomography (OCT) biomarkers.

Similar content being viewed by others

Data availability

Data set is available with author Akash Belenje and at ROP database office at LV Prasad Eye Institute, Hyderabad, Telangana, India-500034.

References

  1. Chiang MF, Quinn GE, Fielder AR, Ostmo SR, Paul Chan RV, Berrocal A, et al. International classification of retinopathy of prematurity, third edition. Ophthalmology. 2021;128:e51–68. https://doi.org/10.1016/j.ophtha.2021.05.031.

    Article  PubMed  Google Scholar 

  2. Bellsmith KN, Brown J, Kim SJ, Goldstein IH, Coyner A, Ostmo S, et al. Aggressive posterior retinopathy of prematurity: clinical and quantitative imaging features in a large North American Cohort. Ophthalmology. 2020;127:1105–12. https://doi.org/10.1016/j.ophtha.2020.01.052.

    Article  PubMed  Google Scholar 

  3. Jalali S, Kesarwani S, Hussain A. Outcomes of a protocol-based management for zone 1 retinopathy of prematurity: the Indian Twin Cities ROP Screening Program report number 2. Am J Ophthalmol. 2011;151:719–24.e2. https://doi.org/10.1016/j.ajo.2010.10.007.

    Article  PubMed  Google Scholar 

  4. Good WV. Final results of the early treatment for retinopathy of prematurity (ETROP) randomized trial. Trans Am Ophthalmol Soc. 2004;102:233–48.

    PubMed  PubMed Central  Google Scholar 

  5. Beccasio A, Mignini C, Caricato A, Iaccheri B, Di Cara G, Verrotti A, et al. New trends in intravitreal anti-VEGF therapy for ROP. Eur J Ophthalmol. 2022;32:1340–51. https://doi.org/10.1177/11206721211073405.

    Article  PubMed  Google Scholar 

  6. Wang SD, Zhang GM, Shenzhen Screening for Retinopathy of Prematurity Cooperative Group. Laser therapy versus intravitreal injection of anti-VEGF agents in monotherapy of ROP: a meta-analysis. Int J Ophthalmol. 2020;13:806–15. https://doi.org/10.18240/ijo.2020.05.17.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mintz-Hittner HA, Kennedy KA, Chuang AZ, BEAT-ROP Cooperative Group. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N. Engl J Med. 2011;364:603–15. https://doi.org/10.1056/NEJMoa1007374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Autrata R, Senková K, Holousová M, Krejcírová I, Dolezel Z, Borek I. Prínos intravitreální aplikace anti-VEGF preparátů v lécbe prahového stadia ROP 3+ v zóne I–II: výsledky ctyrleté studie [Effects of intravitreal pegaptanib or bevacizumab and laser in treatment of threshold retinopathy of prematurity in zone I and posterior zone II-four years results]. Cesk Slov Oftalmol. 2012;68:29–36.

    CAS  PubMed  Google Scholar 

  9. Sankar MJ, Sankar J, Chandra P. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database Syst Rev. 2018;1:CD009734. https://doi.org/10.1002/14651858.CD009734.pub3.

    Article  PubMed  Google Scholar 

  10. Belenje, A, Reddy, RU, Optom, B, Agarwal K, Parmeswarappa DC, Jalali S. Non-contact widefield neonatal retinal imaging for retinopathy of prematurity using the Clarus 700 high resolution true colour reflectance imaging. Eye. 2022. https://doi.org/10.1038/s41433-022-02273-2.

  11. Nguyen TP, Ni S, Khan S, Wei X, Ostmo S, Chiang MF, et al. Advantages of widefield optical coherence tomography in the diagnosis of retinopathy of prematurity. Front Pediatr. 2022;9:797684. https://doi.org/10.3389/fped.2021.797684.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Maldonado RS, Toth CA. Optical coherence tomography in retinopathy of prematurity: looking beyond the vessels. Clin Perinatol. 2013;40:271–96. https://doi.org/10.1016/j.clp.2013.02.007.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hans A, Narang S, Sindhu M, Jain S, Chawla D. Fundus fluorescein angiography in retinopathy of prematurity. Eye (Lond). 2022;36:1604–9. https://doi.org/10.1038/s41433-021-01694-9.

    Article  PubMed  Google Scholar 

  14. Tan W, Li B, Wang Z, Zou J, Jia Y, Yoshida S, et al. Novel potential biomarkers for retinopathy of prematurity. Front Med (Lausanne). 2022;9:840030. https://doi.org/10.3389/fmed.2022.840030.

    Article  PubMed  Google Scholar 

  15. Vinekar A, Nair AP, Sinha S, Vaidya T, Chakrabarty K, Shetty R, et al. Tear fluid angiogenic factors: potential noninvasive biomarkers for retinopathy of prematurity screening in preterm infants. Invest Ophthalmol Vis Sci. 2021;62:2. https://doi.org/10.1167/iovs.62.3.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sehgal P, Narang S, Chawla D, Gupta S, Jain S, Sharma U, et al. Systemic biomarkers of retinopathy of prematurity in preterm babies. Int Ophthalmol. 2022. https://doi.org/10.1007/s10792-022-02576-z.

  17. Padhi TR, Bhusal U, Padhy SK, Patel A, Kelgaonker A, Khalsa A, et al. The retinal vascular growth rate in babies with retinopathy of prematurity could indicate treatment need. Indian J Ophthalmol. 2022;70:1270–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Agarwal K, Jalali S. Classification of retinopathy of prematurity: from then till now. Community Eye Health. 2018;31:S4–7.

    PubMed  PubMed Central  Google Scholar 

  19. https://www.optos.com/products/silverstone/.

  20. Jalali S, Balakrishnan D, Zeynalova Z, Padhi TR, Rani PK. Serious adverse events and visual outcomes of rescue therapy using adjunct bevacizumab to laser and surgery for retinopathy of prematurity. The Indian Twin Cities Retinopathy of Prematurity Screening database Report number 5. Arch Dis Child Fetal Neonatal Ed. 2013;98:F327–33. https://doi.org/10.1136/archdischild-2012-302365.

    Article  PubMed  Google Scholar 

  21. Iwahashi C, Utamura S, Kuniyoshi K, Sugioka K, Konishi Y, Wada N, et al. Factors associated with reactivation after intravitreal bevacizumab or ranibizumab therapy in infants with retinopathy of prematurity. Retina. 2021;41:2261–8.

    Article  CAS  PubMed  Google Scholar 

  22. Hu J, Blair MP, Shapiro MJ, Lichtenstein SJ, Galasso JM, Kapur R. Reactivation of retinopathy of prematurity after bevacizumab injection. Arch Ophthalmol. 2012;130:1000–6.

    Article  CAS  PubMed  Google Scholar 

  23. Mintz-Hittner HA, Geloneck MM, Chuang AZ. Clinical management of recurrent retinopathy of prematurity after intravitreal bevacizumab monotherapy. Ophthalmology. 2016;123:1845–55.

    Article  PubMed  Google Scholar 

  24. Wood EH, Rao P, Moysidis SN, Dedania VS, Elman MJ, Drenser KA, et al. Fellow Eye anti-VEGF ‘Crunch’ effect in retinopathy of prematurity. Ophthalmic Surg Lasers Imaging Retin. 2018;49:e102–4. https://doi.org/10.3928/23258160-20180907-16.

    Article  Google Scholar 

  25. Maldonado RS, O’Connell R, Ascher SB, Sarin N, Freedman SF, Wallace DK, et al. Spectral-domain optical coherence tomographic assessment of severity of cystoid macular edema in retinopathy of prematurity. Arch Ophthalmol. 2012;130:569–78. https://doi.org/10.1001/archopthalmol.2011.1846.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen X, Mangalesh S, Dandridge A, Tran-Viet D, Wallace DK, Freedman SF, et al. Spectral-Domain OCT findings of retinal vascular-avascular junction in infants with retinopathy of prematurity. Ophthalmol Retin. 2018;2:963–71. https://doi.org/10.1016/j.oret.2018.02.001.

    Article  Google Scholar 

  27. Furashova O, Matthè E. Hyperreflectivity of inner retinal layers as a quantitative parameter of ischemic damage in acute retinal vein occlusion (RVO): an optical coherence tomography study. Clin Ophthalmol. 2020;14:2453–62. https://doi.org/10.2147/OPTH.S260000.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang YT, Chang YC, Meng PP, Lin CJ, Lai CT, Hsia NY, et al. Optical coherence tomography biomarkers in predicting treatment outcomes of diabetic macular edema after dexamethasone implants. Front Med (Lausanne). 2022;9:852022. https://doi.org/10.3389/fmed.2022.852022.

    Article  PubMed  Google Scholar 

  29. Wenzel DA, Poli S, Casagrande M, Druchkiv V, Spitzer MS, Bartz-Schmidt KU, et al. Inner retinal layer hyperreflectivity is an early biomarker for acute central retinal artery occlusion. Front Med (Lausanne). 2022;9:854288. https://doi.org/10.3389/fmed.2022.854288.

    Article  PubMed  Google Scholar 

  30. Wu W, Shih C, Wang N, Lien R, Chen YP, Chao AN, et al. Choroidal thickness in patients with a History of retinopathy of prematurity. JAMA Ophthalmol. 2013;131:1451–8. https://doi.org/10.1001/jamaophthalmol.2013.5052.

    Article  PubMed  Google Scholar 

  31. Erol MK, Coban DT, Ozdemir O, Dogan B, Tunay ZO, Bulut M. Choroidal thickness in infants with retinopathy of prematurity. Retina. 2016;36:1191–8. https://doi.org/10.1097/IAE.0000000000000866.

    Article  CAS  PubMed  Google Scholar 

  32. Pheng E, Lim ZD, Tai Li Min E, Rostenberghe HV, Shatriah I. Haemoglobin levels in early life among infants with and without retinopathy of prematurity. Int J Environ Res Public Health. 2021;18:7054. https://doi.org/10.3390/ijerph18137054.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stutchfield C, Jain A, Odd D, Williams C, Markham R. Foetal haemoglobin, blood transfusion, and retinopathy of prematurity in very preterm infants: a pilot prospective cohort study. Eye. 2017;31:1451–5. https://doi.org/10.1038/eye.2017.76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Hyderabad Eye Research Foundation (2020), Hyderabad, India The institute has received funding or support for its ongoing Retinopathy of Prematurity programs from Miriam Hyman Memorial Trust (MHMT, UK), Dalmia Holdings (India), Queen Elizabeth Diamond Jubilee Trust (UK), Public Health Foundation of India, Cognizant Foundation and the Government of India.

Author information

Authors and Affiliations

Authors

Contributions

AB and SJ: devised and designed the study, devised data collection protocol and data analysis, Literature search, wrote the Manuscript. DCP and TRP: helped in improving content and editing the manuscript. RUR and BS: captured the fundus and OCT images on Optos silverstone.

Corresponding author

Correspondence to Subhadra Jalali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

IRB approved with ethics number LEC-BHR-P-09-22-926.

Informed consent

Has been obtained from the person shown in Fig. 1 to use their image in published media.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belenje, A., Reddy, R.U., Parmeswarappa, D.C. et al. Evaluation of optical coherence tomography biomarkers to differentiate favourable and unfavourable responders to intravitreal anti-vascular endothelial growth factor treatment in retinopathy of prematurity. Eye 38, 1097–1103 (2024). https://doi.org/10.1038/s41433-023-02824-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02824-1

This article is cited by

Search

Quick links