Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

TAK1 is essential for MAIT cell development and the differentiation of MAIT1 and MAIT17

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Napier RJ, Adams EJ, Gold MC, Lewinsohn DM. The role of mucosal associated invariant T cells in antimicrobial immunity. Front Immunol. 2015;6:344. https://doi.org/10.3389/fimmu.2015.00344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gold MC, Lewinsohn DM. Mucosal associated invariant T cells and the immune response to infection. Microbes Infect. 2011;13:742–8. https://doi.org/10.1016/j.micinf.2011.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ioannidis M, Cerundolo V, Salio M. The immune modulating properties of mucosal-associated invariant T cells. Front Immunol. 2020;11:1556. https://doi.org/10.3389/fimmu.2020.01556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pellicci DG, Koay HF, Berzins SP. Thymic development of unconventional T cells: how NKT cells, MAIT cells and gammadelta T cells emerge. Nat Rev Immunol. 2020;20:756–70. https://doi.org/10.1038/s41577-020-0345-y.

    Article  CAS  PubMed  Google Scholar 

  5. Liu T, Toor JS, Subedi K, Wang J, Yi Q, Loveless I, et al. Cbf-beta is required for the development, differentiation, and function of murine mucosal-associated invariant T cells. Cell Mol Immunol. 2022;19:1314–6.

    Article  CAS  PubMed  Google Scholar 

  6. Chang JH, Hu H, Sun SC. Survival and maintenance of regulatory T cells require the kinase TAK1. Cell Mol Immunol. 2015;12:572–9. https://doi.org/10.1038/cmi.2015.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu HH, Xie M, Schneider MD, Chen ZJ. Essential role of TAK1 in thymocyte development and activation. Proc Natl Acad Sci USA 2006;103:11677–82. https://doi.org/10.1073/pnas.0603089103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suddason T, Anwar S, Charlaftis N, Gallagher E. T-cell-specific deletion of Map3k1 reveals the critical role for Mekk1 and Jnks in Cdkn1b-dependent proliferative expansion. Cell Rep. 2016;14:449–57. https://doi.org/10.1016/j.celrep.2015.12.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wan YY, Chi H, Xie M, Schneider MD, Flavell RA. The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat Immunol. 2006;7:851–8. https://doi.org/10.1038/ni1355.

    Article  CAS  PubMed  Google Scholar 

  10. Suddason T, Gallagher E. Genetic insights into Map3k-dependent proliferative expansion of T cells. Cell Cycle. 2016;15:1956–60. https://doi.org/10.1080/15384101.2016.1189042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanjo H, Tokumaru S, Akira S, Taki S. Conditional deletion of TAK1 in T cells reveals a pivotal role of TCRalphabeta+ intraepithelial lymphocytes in preventing lymphopenia-associated colitis. PLoS ONE. 2015;10:e0128761. https://doi.org/10.1371/journal.pone.0128761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hartley GE, Edwards ESJ, Aui PM, Varese N, Stojanovic S, McMahon J, et al. Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Sci Immunol. 2020;5:eabf8891. https://doi.org/10.1126/sciimmunol.abf8891.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salou M, Legoux F, Lantz O. MAIT cell development in mice and humans. Mol Immunol. 2021;130:31–6. https://doi.org/10.1016/j.molimm.2020.12.003.

    Article  CAS  PubMed  Google Scholar 

  14. Koay HF, Godfrey DI, Pellicci DG. Development of mucosal-associated invariant T cells. Immunol Cell Biol. 2018;96:598–606. https://doi.org/10.1111/imcb.12039.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the NIH tetramer core for providing MR1 tetramers and Dr. Stephen D Brown for performing irradiation for the bone marrow charisma transfer experiment. We thank all laboratory members for their support and encouragement. This research is partially supported by NIH RO1AI119041 (QSM), Henry Ford Immunology Program grants (T71016, QSM; T71017, LZ), and the Henry Ford Cancer Institute Postdoctoral fellowship program (JW and KS).

Author information

Authors and Affiliations

Authors

Contributions

QSM and LZ conceived and designed the project. RK, BZ, JW, KS and JT harvested and processed mouse tissues. RK, BZ and JW designed and performed the flow cytometry experiments. RK, BZ and JT performed MR1-tetramer enrichment. JW, RK and BZ analyzed the data. JW, RK, LZ and QSM wrote the manuscript with feedback from all authors.

Corresponding authors

Correspondence to Li Zhou or Qing-Sheng Mi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krevh, R., Wang, J., Zuniga, B. et al. TAK1 is essential for MAIT cell development and the differentiation of MAIT1 and MAIT17. Cell Mol Immunol 20, 854–856 (2023). https://doi.org/10.1038/s41423-023-00999-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-023-00999-x

Search

Quick links