Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Activated KRAS, polyamines, iASPP and TME: a multiple liaison in pancreatic cancer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reciprocal cross-talk between RAS mutations in PDAC cells and the surrounding TME.

References

  1. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.

    Article  CAS  PubMed  Google Scholar 

  2. Levine AJ. Exploring the future of research in the Tp53 field. Cell Death Differ. 2022;29:893–4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barnett AH, Pyke DA. The genetics of diabetic complications. Clin Endocrinol Metab. 1986;15:715–26.

    Article  CAS  PubMed  Google Scholar 

  4. Butera A, Roy M, Zampieri C, Mammarella E, Panatta E, Melino G, et al. p53-driven lipidome influences non-cell-autonomous lysophospholipids in pancreatic cancer. Biol Direct. 2022;17:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blandino G. Drugging THE MASTER REGulator TP53 in cancer: mission possible? J Clin Oncol. 2021;39:1595–7.

    Article  CAS  PubMed  Google Scholar 

  6. Sinn M, Sinn BV, Treue D, Keilholz U, Damm F, Schmuck R, et al. TP53 mutations predict sensitivity to adjuvant gemcitabine in patients with pancreatic ductal adenocarcinoma: next-generation sequencing results from the CONKO-001 Trial. Clin Cancer Res. 2020;26:3732–9.

    Article  CAS  PubMed  Google Scholar 

  7. Panatta E, Zampieri C, Melino G, Amelio I. Understanding p53 tumour suppressor network. Biol Direct. 2021;16:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thomas AF, Kelly GL, Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ. 2022;29:961–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mammarella E, Zampieri C, Panatta E, Melino G, Amelio I. NUAK2 and RCan2 participate in the p53 mutant pro-tumorigenic network. Biol Direct. 2021;16:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Voutsadakis IA. Mutations of p53 associated with pancreatic cancer and therapeutic implications. Ann Hepatobiliary Pancreat Surg. 2021;25:315–27.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee MS, Dennis C, Naqvi I, Dailey L, Lorzadeh A, Ye G, et al. Ornithine aminotransferase supports polyamine synthesis in pancreatic cancer. Nature. 2023;616:339–47.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng S, Wang X, Liu H, Zhao D, Lin Q, Jiang Q, et al. iASPP suppression mediates terminal UPR and improves BRAF-inhibitor sensitivity of colon cancers. Cell Death Differ. 2023;30:327–40.

    Article  CAS  PubMed  Google Scholar 

  13. Miller P, Akama-Garren EH, Owen RP, Demetriou C, Carroll TM, Slee E, et al. p53 inhibitor iASPP is an unexpected suppressor of KRAS and inflammation driven pancreatic cancer. Cell Death Differ. 2023, in press.

  14. Panatta E, Butera A, Celardo I, Leist M, Melino G, Amelio I. p53 regulates expression of nuclear envelope components in cancer cells. Biol Direct. 2022;17:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adiseshaiah PP, Crist RM, Hook SS, McNeil SE. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol. 2016;13:750–65.

    Article  CAS  PubMed  Google Scholar 

  16. Agostini M, Mancini M, Candi E. Long non-coding RNAs affecting cell metabolism in cancer. Biol Direct. 2022;17:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aubrey BJ, Brennan MS, Diepstraten ST, Wang Z, Chang C, Herold MJ, et al. Loss of TRP53 reduces but does not overcome dependency of lymphoma cells on MCL-1. Cell Death Differ. 2022;29:1074–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Donzelli S, Cioce M, Sacconi A, Zanconato F, Daralioti T, Goeman F, et al. A PIK3CA-mutant breast cancer metastatic patient-derived organoid approach to evaluate alpelisib treatment for multiple secondary lesions. Mol Cancer. 2022;21:152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Z, Strasser A, Kelly GL. Should mutant TP53 be targeted for cancer therapy? Cell Death Differ. 2022;29:911–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work has been supported by the MUR-PNRR M4C2I1.3 PE6 project PE00000019 Heal Italia (CUP: H83C22000550006) to GB.

Author information

Authors and Affiliations

Authors

Contributions

GB wrote the manuscript.

Corresponding author

Correspondence to Giovanni Blandino.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blandino, G. Activated KRAS, polyamines, iASPP and TME: a multiple liaison in pancreatic cancer. Cell Death Differ 30, 1615–1617 (2023). https://doi.org/10.1038/s41418-023-01169-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01169-2

Search

Quick links