Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Vessel co-option and angiotropic extravascular migratory metastasis: a continuum of tumour growth and spread?

Abstract

Two fields of cancer research have emerged dealing with the biology of tumour cells localised to the abluminal vascular surface: vessel co-option (VCo), a non-angiogenic mode of tumour growth and angiotropic extravascular migratory metastasis (EVMM), a non-hematogenous mode of tumour migration and metastasis. VCo is a mechanism by which tumour cells gain access to a blood supply by spreading along existing blood vessels in order to grow locally. Angiotropic EVMM involves “pericytic mimicry” (PM), which is characterised by tumour cells continuously migrating in the place of pericytes distantly along abluminal vascular surfaces. When cancer cells are engaged in PM and EVMM, they migrate along blood vessels beyond the advancing front of the tumour to secondary sites with the formation of regional and distant metastases. In the present perspective, the authors review the current scientific literature, emphasising the analogies between embryogenesis and cancer progression, the re-activation of embryonic signals by “cancer stem cells”, and the important role of laminins and epithelial-mesenchymal-transition. This perspective maintains that VCo and angiotropic EVMM constitute complementary processes and represent a continuum of cancer progression from the primary tumour to metastases and of tumour growth to EVMM, analogous to the embryonic development program.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recapitulation of tumour progression via a continuum of vessel co-option (VCo)/growth and angiotropic extravascular migratory metastasis (EVMM) illustrated by images from cutaneous and ocular melanoma progression.
Fig. 2: Replacement HPG demonstrating PM/VCo in liver metastases originating from different types of primary tumours.

Similar content being viewed by others

References

  1. Chitty JL, Filipe EC, Lucas MC, Herrmann D, Cox TR, Timpson P. Recent advances in understanding the complexities of metastasis. Faculty Rev-1169–1187 (2018).

  2. Pezzella F, Pastorino U, Tagliabue E, Andreola S, Sozzi G, Gasparini G, et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol. 1997;151:1417–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. Nat Rev Clin Oncol. 2019;16:469–93.

    Article  CAS  PubMed  Google Scholar 

  4. Lugassy C, Eyden BP, Christensen L, Escande JP. Angio-tumoral complex in human malignant melanoma characterised by free laminin: ultrastructural and immunohistochemical observations. J Submicrosc Cytol Pathol. 1997;29:19–28.

    CAS  PubMed  Google Scholar 

  5. Barnhill RL, Busam KJ, Berwick M, Blessing K, Cochran AJ, Elder DE, et al. Tumour vascularity is not a prognostic factor for cutaneous melanoma. Lancet. 1994;29:1237–8.

    Article  Google Scholar 

  6. Lugassy C, Kleinman HK, Vermeulen PB, Barnhill RL. Angiotropism, pericytic mimicry and extravascular migratory metastasis: an embryogenesis-derived program of tumor spread. Angiogenesis. 2020;23:27–41.

    Article  CAS  PubMed  Google Scholar 

  7. Donnem T, Reynolds AR, Kuczynski EA, Gatter K, Vermeulen PB, Kerbel RS, et al. Non-angiogenic tumours and their influence on cancer biology. Nat Rev Cancer. 2018;18:323–36.

    Article  CAS  PubMed  Google Scholar 

  8. Welch DR, Hurst DR. Defining the hallmarks of metastasis. Cancer Res. 2019;79:3011–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Massagué J, Ganesh K. Metastasis-initiating cells and ecosystems. Cancer Discov. 2021;11:971–94.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vandyck HH, Hillen LM, Bosisio FM, van den Oord J, Zur Hausen A, Winnepenninckx V. Rethinking the biology of metastatic melanoma: a holistic approach. Cancer Metastasis Rev. 2021;40:603–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nataraj NB, Marrocco I, Yarden Y. Roles for growth factors and mutations in metastatic dissemination. Biochem Soc Trans. 2021;49:1409–23.

  12. Haas G, Fan S, Ghadimi M, De Oliveira T, Conradi LC. Different forms of tumor vascularization and their clinical implications focusing on vessel co-option in colorectal cancer liver metastases. Front Cell Dev Biol. 2021;12:612774.

    Article  Google Scholar 

  13. Häussinger D, Kordes C. Space of Disse: a stem cell niche in the liver. Biol Chem. 2019;18:81–95.

    Article  Google Scholar 

  14. Montana V, Sontheimer H. Bradykinin promotes the chemotactic invasion of primary brain tumors. J Neurosci. 2011;30:4858–67.

    Article  Google Scholar 

  15. Yadav VN, Zamler D, Baker GJ, Kadiyala P, Erdreich-Epstein A, DeCarvalho AC, et al. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: a genetic knockdown study. Oncotarget. 2016;13:83701–19.

    Article  Google Scholar 

  16. Griveau A, Seano G, Shelton SJ, Kupp R, Jahangiri A, Obernier K, et al. A glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell. 2018;14:874–89.

  17. Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH, Lee DJ, et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell. 2014;27:1002–16.

    Article  Google Scholar 

  18. Frentzas S, Simoneau E, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E, et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med. 2016;22:1294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rada M, Kapelanski-Lamoureux A, Petrillo S, Tabariès S, Siegel P. Reynolds AR, et al. Runt related transcription factor-1 plays a central role in vessel co-option of colorectal cancer liver metastases. Commun Biol. 2021;4:950.

  20. Macklin PS, McAuliffe J, Pugh CW, Yamamoto A. Hypoxia and HIF pathway in cancer and the placenta. Placenta. 2017;56:8–13.

    Article  CAS  PubMed  Google Scholar 

  21. Gatter K, Brown D. Bone Marrow Diagnosis. An Illustrated. Guide. 3rd edn. Oxford: Wiley Blackwell; 2015.

  22. Lugassy C, Eyden BP, Christensen L, Escande JP. Matrix interactions between tumor cells and endothelium in human malignant melanoma. J Invest Dermatol. 1996;106:894.

    Google Scholar 

  23. Lugassy C, Wadehra M, Li X, Corselli M, Akhavan D, Binder SW, et al. Pilot study on “pericytic mimicry” and potential embryonic/stem cell properties of angiotropic melanoma cells interacting with the abluminal vascular surface. Cancer Microenviron. 2013;6:19–29.

    Article  CAS  PubMed  Google Scholar 

  24. Lugassy C, Péault B, Wadehra M, Kleinman HK, Barnhill RL. Could pericytic mimicry represent another type of melanoma cell plasticity with embryonic properties? Pigment Cell Melanoma Res. 2013;26:746–54.

    Article  PubMed  Google Scholar 

  25. Lugassy C, Barnhill RL, Christensen L. Melanoma and extravascular migratory metastasis. J Cutan Pathol. 2000;27:481.

    Article  CAS  PubMed  Google Scholar 

  26. Celià-Terrassa T, Kang Y. Metastatic niche functions and therapeutic opportunities. Nat Cell Biol. 2018;20:868–77.

    Article  PubMed  Google Scholar 

  27. Moose DL, Krog BL, Kim TH, Zhao L, Williams-Perez S, Burke G, et al. Cancer cells resist mechanical destruction in circulation via rhoA/actomyosin-dependent mechano-adaptation. Cell Rep. 2020;17:3864–74.

    Article  Google Scholar 

  28. Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;23:992–1009.

    Article  Google Scholar 

  29. Beunk L, Brown K, Nagtegaal I, Friedl P, Wolf K. Cancer invasion into musculature: mechanics, molecules and implications. Semin Cell Dev Biol. 2019;93:36–45.

    Article  CAS  PubMed  Google Scholar 

  30. Barnhill RL, Ye M, Batistella A, Stern MH, Roman-Roman S, Dendale R, et al. The biological and prognostic significance of angiotropism in uveal melanoma. Lab Invest. 2017;97:746–59.

  31. van Dam PJ, van der Stok EP, Teuwen LA, Van den Eynden GG, Illemann M, Frentzas S, et al. International consensus guidelines for scoring the histopathological growth patterns of liver metastasis. Br J Cancer. 2017;7:1427–41.

    Google Scholar 

  32. Barnhill R, Vermeulen P, Daelemans S, van Dam PJ, Roman-Roman S, Servois V, et al. Replacement and desmoplastic histopathological growth patterns: a pilot study of prediction of outcome in patients with uveal melanoma liver metastases. J Pathol Clin Res. 2018;4:227–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barnhill R, van Dam PJ, Vermeulen P, Champenois G, Nicolas A, Rawson RV, et al. Replacement and desmoplastic histopathological growth patterns in cutaneous melanoma liver metastases: frequency, characteristics, and robust prognostic value. J Pathol Clin Res. 2020;6:195–206.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Wang S, Dudley AC. Models and molecular mechanisms of blood vessel co-option by cancer cells. Angiogenesis. 2020;23:17–25.

    Article  PubMed  Google Scholar 

  35. Lugassy C, Scolyer R, Long G, Menzies A, Mischel P, Barnhill RL. PDGFBR expression in anti-BRAF resistant melanoma: are angiotropic melanoma cells a source of BRAF resistance and disease progression? J Cutan Pathol. 2014;41:159–60.

    Google Scholar 

  36. Gritsenko P, Leenders W, Friedl P. Recapitulating in vivo-like plasticity of glioma cell invasion along blood vessels and in astrocyte-rich stroma. Histochem Cell Biol. 2017;148:395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20:26–41.

    Article  CAS  PubMed  Google Scholar 

  38. Yao H, Price TT, Cantelli G, Ngo B, Warner MJ, Olivere L, et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature. 2018;560:55–60.

    Article  CAS  PubMed  Google Scholar 

  39. Levy MJ, Gleeson FC, Zhang L. Endoscopic ultrasound fine-needle aspiration detection of extravascular migratory metastasis from a remotely located pancreatic cancer. Clin Gastroenterol Hepatol. 2009;7:246–8.

    Article  PubMed  Google Scholar 

  40. Rustagi T, Gleeson FC, Chari ST, Lehrke HD, Takahashi N, Malikowski TM, et al. Safety, diagnostic accuracy, and effects of endoscopic ultrasound fine-needle aspiration on detection of extravascular migratory metastases. Clin Gastroenterol Hepatol. 2019;17:2533–40.

    Article  PubMed  Google Scholar 

  41. Shen J, Shrestha S, Rao PN, Asatrian G, Scott MA, Nguyen V, et al. Pericytic mimicry in well-differentiated liposarcoma/atypical lipomatous tumor. Hum Pathol. 2016;54:92–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature. 2014;6:109–13.

    Article  Google Scholar 

  43. Bentolila LA, Prakash R, Mihic-Probst D, Wadehra M, Kleinman HK, Carmichael TS, et al. Imaging of angiotropism/vascular co-option in a murine model of brain melanoma: implications for melanoma progression along extravascular pathways. Sci Rep. 2016;6:23834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fornabaio G, Barnhill RL, Lugassy C, Bentolila LA, Cassoux N, Roman-Roman S, et al. Angiotropism and extravascular migratory metastasis in cutaneous and uveal melanoma progression in a zebrafish model. Sci Rep. 2018;11:10448.

    Article  Google Scholar 

  45. Er EE, Valiente M, Ganesh K, Zou Y, Agrawal S, Hu J, et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol. 2018;20:966–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lai CJ, Lin CY, Liao WY, Hour TC, Wang HD, Chuu CP. CD44 promotes migration and invasion of docetaxel-resistant prostate cancer cells likely via induction of Hippo-Yap signaling. Cells. 2019;30:8.

  47. Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014;16:488–94.

    Article  CAS  PubMed  Google Scholar 

  48. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al. EMT International Association (TEMTIA). Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21:341–52.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wu Z, Guan KL. Hippo signaling in embryogenesis and development. Trends Biochem Sci. 2021;46:51–63.

    Article  CAS  PubMed  Google Scholar 

  50. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133:571–3.

    Article  Google Scholar 

  51. Dupin E, Calloni GW, Coelho-Aguiar JM, Le Douarin NM. The issue of the multipotency of the neural crest cells. Dev Biol. 2018;444:S47–59.

  52. Burton GJ, Cindrova-Davies T, Turco MY. Review: Histotrophic nutrition and the placental-endometrial dialogue during human early pregnancy. Placenta. 2020;102:21–6.

    Article  CAS  PubMed  Google Scholar 

  53. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;12:28.

    Article  Google Scholar 

  54. Cofre J, Saalfeld K, Abdelhay E. Cancer as an embryological phenomenon and its developmental pathways: a hypothesis regarding the contribution of the noncanonical Wnt pathway. ScientificWorldJournal. 2019;3:4714781.

    Google Scholar 

  55. Ober EA, Lemaigre FP. Development of the liver: insights into organ and tissue morphogenesis. J Hepatol. 2018;68:1049–62.

    Article  CAS  PubMed  Google Scholar 

  56. Yap L, Tay HG, Nguyen MTX, Tjin MS, Tryggvason K. Laminins in cellular differentiation. Trends Cell Biol. 2019;29:987–1000.

    Article  CAS  PubMed  Google Scholar 

  57. Sekiguchi R, Yamada KM. Basement membranes in development and disease. Curr Top Dev Biol. 2018;130:143–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rousselle P, Scoazec JY. Laminin 332 in cancer: when the extracellular matrix turns signals from cell anchorage to cell movement. Semin Cancer Biol. 2020;62:149–65.

    Article  CAS  PubMed  Google Scholar 

  59. Sun T, Patil R, Galstyan A, Klymyshyn D, Ding H, Chesnokova A, et al. Blockade of a laminin-411-notch axis with CRISPR/Cas9 or a nanobioconjugate inhibits glioblastoma growth through tumor-microenvironment cross-talk. Cancer Res. 2019;79:1239–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lugassy C, Vernon SE, Busam K, Engbring JA, Welch DR, Poulos EG, et al. Angiotropism of human melanoma: studies involving in transit and other cutaneous metastases and the chicken chorioallantoic membrane: implications for extravascular melanoma invasion and metastasis. Am J Dermatopathol. 2006;28:187–93.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Teuwen LA, De Rooij LPMH, Cuypers A, Rohlenova K, Dumas SJ, García-Caballero M, et al. Tumor vessel co-option probed by single-cell analysis. Cell Rep. 2021;35:109253.

    Article  CAS  PubMed  Google Scholar 

  62. Tsai HH, Niu J, Munji R, Davalos D, Chang J, Zhang H, et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science. 2016;351:379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rada M, Lazaris A, Kapelanski-Lamoureux A, Mayer TZ, Metrakos P. Tumor microenvironment conditions that favor vessel co-option in colorectal cancer liver metastases: a theoretical model. Semin Cancer Biol. 2021;71:52–64.

    Article  CAS  PubMed  Google Scholar 

  64. Hutchins EJ, Bronner ME. Draxin alters laminin organization during basement membrane remodeling to control cranial neural crest EMT. Dev Biol. 2019;446:151–8.

    Article  CAS  PubMed  Google Scholar 

  65. Maeda H, Khatami M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med. 2018;1:11.

    Google Scholar 

  66. Demicheli R, Terenziani M, Valagussa P, Moliterni A, Zambetti M, Bonadonna G. Local recurrences following mastectomy: support for the concept of tumor dormancy. J Natl Cancer Inst. 1994;86:45–8.

    Article  CAS  PubMed  Google Scholar 

  67. Bushnell GG, Deshmukh AP, den Hollander P, Luo M, Soundararajan R, Jia D, et al. Breast cancer dormancy: need for clinically relevant models to address current gaps in knowledge. npj Breast Cancer. 2021;28:66.

    Article  Google Scholar 

  68. Clark AG, Vignjevic DM. Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol Oct. 2015;36:13–22.

    Article  CAS  Google Scholar 

  69. Barnhill RL, Lemaitre S, Lévy-Gabrielle C, Rodrigues M, Desjardins L, Dendale R, et al. Satellite in transit metastases in rapidly fatal conjunctival melanoma: implications for angiotropism and extravascular migratory. Pathology. 2016;48:166–76.

  70. Höppener DJ, Nierop PMH, Hof J, Sideras K, Zhou G, Visser L, et al. Enrichment of the tumour immune microenvironment in patients with desmoplastic colorectal liver metastasis. Br J Cancer. 2020;123:196–206.

Download references

Acknowledgements

We sincerely thank Maud Haon who designed the diagram for Fig. 1.

Funding

N/A

Author information

Authors and Affiliations

Authors

Contributions

CL and RB designed and wrote the manuscript with essential inputs from DR, FP and PV. All authors reviewed the manuscript.

Corresponding author

Correspondence to Claire Lugassy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lugassy, C., Vermeulen, P.B., Ribatti, D. et al. Vessel co-option and angiotropic extravascular migratory metastasis: a continuum of tumour growth and spread?. Br J Cancer 126, 973–980 (2022). https://doi.org/10.1038/s41416-021-01686-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01686-2

This article is cited by

Search

Quick links