Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IGF2BP1 regulates the cargo of extracellular vesicles and promotes neuroblastoma metastasis

Abstract

Neuroblastoma is a highly metastatic cancer, and thus is one of the leading causes of cancer-related mortalities in pediatric patients. More than 50% of NB cases exhibit 17q21-ter partial chromosomal gain, which is independently associated with poor survival, suggesting the clinical importance of genes at this locus in NB. IGF2BP1 is one such proto-oncogene located at 17q locus, and was found to be upregulated in patients with metastatic NBs. Here, utilizing multiple immunocompetent mouse models, along with our newly developed highly metastatic NB cell line, we demonstrate the role of IGF2BP1 in promoting NB metastasis. Importantly, we show the significance of small extracellular vesicles (EVs) in NB progression, and determine the pro-metastatic function of IGF2BP1 by regulating the NB-EV-protein cargo. Through unbiased proteomic analysis of EVs, we discovered two novel targets (SEMA3A and SHMT2) of IGF2BP1, and reveal the mechanism of IGF2BP1 in NB metastasis. We demonstrate that IGF2BP1 directly binds and governs the expression of SEMA3A/SHMT2 in NB cells, thereby modulating their protein levels in NB-EVs. IGF2BP1-affected levels of SEMA3A and SHMT2 in the EVs, regulate the formation of pro-metastatic microenvironment at potential metastatic organs. Finally, higher levels of SEMA3A/SHMT2 proteins in the EVs derived from NB-PDX models indicate the clinical significance of the two proteins and IGF2BP1-SEMA3A/SHMT2 axis in NB metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation and characterization of a novel highly metastatic transplantable mouse NB cell line - M1.
Fig. 2: IGF2BP1 promotes metastasis of NB and reduces survival in mouse models.
Fig. 3: IGF2BP1 does not impact the pro-metastatic properties of highly metastatic M1 cells in vitro.
Fig. 4: IGF2BP1 promotes metastasis in NB via small extracellular vesicles (EVs).
Fig. 5: IGF2BP1-regulated proteins SEMA3A and SHMT2 induce pre-metastatic niche in an EV-mediated manner.
Fig. 6: IGF2BP1 increases the expression of SEMA3A and SHMT2 by stabilizing their mRNAs.

Similar content being viewed by others

Data availability

Data generated in the study are available within the article and its Supplementary data files. Raw EV-mass spectrometry data are available upon request from the corresponding author.

References

  1. Nakagawara A, Li YY, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol. 2018;48:214–41.

    Article  PubMed  Google Scholar 

  2. Irwin MS, Park JR. Neuroblastoma: paradigm for precision medicine. Pediatr Clin North Am. 2015;62:225–56.

    Article  PubMed  Google Scholar 

  3. Cohn SL, Pearson ADJ, London WB, Monclair T, Ambros PF, Brodeur GM, et al. The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J Clin Oncol. 2009;27:289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bown N, Cotterill S, Lastowska M, O’Neill S, Pearson ADJ, Plantaz D, et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N. Engl J Med. 1999;340:1954–61.

    Article  CAS  PubMed  Google Scholar 

  5. Bown N, Lastowska M, Cotterill S, O’Neill S, Ellershaw C, Roberts P, et al. 17q gain in neuroblastoma predicts adverse clinical outcome. Med Pediatr Oncol. 2001;36:14–9.

    Article  CAS  PubMed  Google Scholar 

  6. Bell JL, Turlapati R, Liu T, Schulte JH, Huttelmaier S. IGF2BP1 harbors prognostic significance by gene gain and diverse expression in neuroblastoma. J Clin Oncol. 2015;33:1285.

    Article  CAS  PubMed  Google Scholar 

  7. Noubissi FK, Elcheva I, Bhatia N, Shakoori A, Ougolkov A, Liu JH, et al. CRD-BP mediates stabilization of beta TrCP1 and c-myc mRNA in response to beta-catenin signalling. Nature. 2006;441:898–901.

    Article  CAS  PubMed  Google Scholar 

  8. Zirkel A, Lederer M, Stohr N, Pazaitis N, Huttelmaier S. IGF2BP1 promotes mesenchymal cell properties and migration of tumor-derived cells by enhancing the expression of LEF1 and SNAI2 (SLUG). Nucleic Acids Res. 2013;41:6618–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elcheva IA, Wood T, Chiarolanzio K, Chim B, Wong MD, Singh V, et al. RNA-binding protein IGF2BP1 maintains leukemia stem cell properties by regulating HOXB4, MYB, and ALDH1A1. Leukemia. 2020;34:1354–63.

    Article  CAS  PubMed  Google Scholar 

  10. Yaniv K, Fainsod A, Kalcheim C, Yisraeli JK. The RNA binding protein Vg1 RBP is required for cell migrations during early neural development. Dev Biol. 2003;259:483–83.

    Google Scholar 

  11. Bell JL, Wachter K, Muleck B, Pazaitis N, Kohn M, Lederer M, et al. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 2013;70:2657–75.

    Article  CAS  PubMed  Google Scholar 

  12. Goswami S, Tarapore RS, Poenitzsch Strong AM, TeSlaa JJ, Grinblat Y, Setaluri V, et al. MicroRNA-340-mediated degradation of microphthalmia-associated transcription factor (MITF) mRNA is inhibited by coding region determinant-binding protein (CRD-BP). J Biol Chem. 2015;290:384–95.

    Article  CAS  PubMed  Google Scholar 

  13. Elcheva I, Tarapore RS, Bhatia N, Spiegelman VS. Overexpression of mRNA-binding protein CRD-BP in malignant melanomas. Oncogene. 2008;27:5069–74.

    Article  CAS  PubMed  Google Scholar 

  14. Vainer G, Vainer-Mossel E, Pkarsky A, Shenoy SM, Oberman F, Yeffet A, et al. A role for VICKZ proteins in the progression of colorectal carcinomas: regulating lamellipodia formation. J Pathol. 2008;215:445–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stohr N, Huttelmaier S. IGF2BP1 A post-transcriptional “driver” of tumor cell migration. Cell Adhes Migr. 2012;6:312–8.

    Article  Google Scholar 

  16. Hamilton KE, Noubissi FK, Katti PS, Hahn CM, Davey SR, Lundsmith ET, et al. IMP1 promotes tumor growth, dissemination and a tumor-initiating cell phenotype in colorectal cancer cell xenografts. Carcinogenesis. 2013;34:2647–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh V, Gowda CP, Singh V, Ganapathy AS, Karamchandani DM, Eshelman MA, et al. The mRNA-binding protein IGF2BP1 maintains intestinal barrier function by up-regulating occludin expression. J Biol Chem. 2020;295:8602–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biegel JM, Dhamdhere M, Gao S, Gowda CP, Kawasawa YI, Spiegelman VS. Inhibition of the mRNA-binding protein IGF2BP1 suppresses proliferation and sensitizes neuroblastoma cells to chemotherapeutic agents. Front Oncol. 2021;11:608816.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49:347–60.

    Article  CAS  PubMed  Google Scholar 

  20. Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32:623–42.

    Article  CAS  PubMed  Google Scholar 

  21. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang HY, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17:816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McAndrews KM, Kalluri R. Mechanisms associated with biogenesis of exosomes in cancer. Mol Cancer. 2019;18:52.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Peinado H, Kovic MA, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo YX, Ji X, Liu JB, Fan DD, Zhou QB, Chen C, et al. Effects of exosomes on pre-metastatic niche formation in tumors. Mol Cancer. 2019;18:39.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morini M, Cangelosi D, Segalerba D, Marimpietri D, Raggi F, Castellano A, et al. Exosomal microRNAs from longitudinal liquid biopsies for the prediction of response to induction chemotherapy in high-risk neuroblastoma patients: a proof of concept SIOPEN study. Cancers. 2019;11:1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vikesaa J, Hansen TVO, Jonson L, Borup R, Wewer UM, Christiansen J, et al. RNA-binding IMPs promote cell adhesion and invadopodia formation. Embo J. 2006;25:1456–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Glass M, Misiak D, Bley N, Muller S, Hagemann S, Busch B, et al. IGF2BP1, a conserved regulator of RNA turnover in cancer. Front Mol Biosci. 2021;8:632219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Elcheva I, Goswami S, Noubissi FK, Spiegelman VS. CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. Mol Cell. 2009;35:240–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Noubissi FK, Goswami S, Sanek NA, Kawakami K, Minamoto T, Moser A, et al. Wnt signaling stimulates transcriptional outcome of the Hedgehog pathway by stabilizing GLI1 mRNA. Cancer Res. 2009;69:8572–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weiss WA, Aldape K, Bishop JM. Targeted expression of MYCN causes neuroblastoma in transgenic mice. Eur J Cancer. 1997;33:2137–37.

    Google Scholar 

  33. Stauffer JK, Lincoln E, Greer B, Khan T, Salcedo R, Hixon JA, et al. Molecular profiling of a novel transplantable model of murine neuroblastoma. J Immunother. 2006;29:682–3.

    Google Scholar 

  34. Ghoshal A, Rodrigues LC, Gowda CP, Elcheva IA, Liu ZQ, Abraham T, et al. Extracellular vesicle-dependent effect of RNA-binding protein IGF2BP1 on melanoma metastasis. Oncogene. 2019;38:4182–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Libring S, Shinde A, Chanda MK, Nuru M, George H, Saleh AM, et al. The dynamic relationship of breast cancer cells and fibroblasts in fibronectin accumulation at primary and metastatic tumor sites. Cancers. 2020;12:1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He CS, Wang LN, Li L, Zhu GQ. Extracellular vesicle-orchestrated crosstalk between cancer-associated fibroblasts and tumors. Transl Oncol. 2021;14:101231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giusti I, Di Francesco M, Poppa G, Esposito L, D’Ascenzo S, Dolo V. Tumor-derived extracellular vesicles activate normal human fibroblasts to a cancer-associated fibroblast-like phenotype, sustaining a pro-tumorigenic microenvironment. Front Oncol. 2022;12:839880.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang XL, Klamer B, Li J, Fernandez S, Li L. A pan-cancer study of class-3 semaphorins as therapeutic targets in cancer. Bmc Med Genomics. 2020;13:45.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yazdani U, Terman JR. The semaphorins. Genome Biol. 2006;7:211.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Treps L, Edmond S, Harford-Wright E, Galan-Moya EM, Schmitt A, Azzi S, et al. Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma. Oncogene. 2016;35:2615–23.

    Article  CAS  PubMed  Google Scholar 

  42. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wu ZZ, Wang S, Yang QC, Wang XL, Yang LL, Liu B, et al. Increased expression of SHMT2 is associated with poor prognosis and advanced pathological grade in oral squamous cell carcinoma. Front Oncol. 2020;10:588530.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Han W, Wang S, Qi Y, Wu F, Tian N, Qiang B, et al. Targeting HOTAIRM1 ameliorates glioblastoma by disrupting mitochondrial oxidative phosphorylation and serine metabolism. iScience. 2022;25:104823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wallis N, Oberman F, Shurrush K, Germain N, Greenwald G, Gershon T, et al. Small molecule inhibitor of Igf2bp1 represses Kras and a pro-oncogenic phenotype in cancer cells. Rna Biol. 2022;19:26–43.

    Article  CAS  PubMed  Google Scholar 

  46. Gharaibeh B, Lu A, Tebbets J, Zheng B, Feduska J, Crisan M, et al. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc. 2008;3:1501–9.

    Article  CAS  PubMed  Google Scholar 

  47. McAlister GC, Nusinow DP, Jedrychowski MP, Wuhr M, Huttlin EL, Erickson BK, et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem. 2014;86:7150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Askeland A, Borup A, Ostergaard O, Olsen JV, Lund SM, Christiansen G, et al. Mass-spectrometry based proteome comparison of extracellular vesicle isolation methods: comparison of ME-kit, size-exclusion chromatography, and high-speed centrifugation. Biomedicines. 2020;8:246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burton JB, Carruthers NJ, Hou Z, Matherly LH, Stemmer PM. Pattern analysis of organellar maps for interpretation of proteomic data. Proteomes. 2022;10:18.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Paul Sondel’s lab for the generous gift of reagents, Venkatesha Basrur and University of Michigan mass-spectrometry core for help with EV-mass spec. We also thank Joe Bednarczyk and Flow-Cytometry Core, Han Chen and TEM Facility, and Molecular & Histopathology Core services at Penn State College of Medicine for help with cell-sorting, TEM and tissue mounting, respectively.

Funding

This study was supported by the NIH grant R01 CA243167 (VSS), and Four Diamonds Fund (VSS).

Author information

Authors and Affiliations

Authors

Contributions

MRD: study design, data curation, methodology, formal analysis, validation, investigation, visualization, writing-original draft, revision; CPG, VS: methodology, data curation; NC, ZL: data curation, bioinformatic analysis; CNG: manuscript reviewing, data curation; JMS, AS, SD: resources, manuscript reviewing; HGW: manuscript reviewing; VSS: conception and design, study supervision, funding acquisition, writing-review & revision, project administration.

Corresponding author

Correspondence to Vladimir S. Spiegelman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhamdhere, M.R., Gowda, C.P., Singh, V. et al. IGF2BP1 regulates the cargo of extracellular vesicles and promotes neuroblastoma metastasis. Oncogene 42, 1558–1571 (2023). https://doi.org/10.1038/s41388-023-02671-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02671-0

This article is cited by

Search

Quick links