Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Muc4 loss mitigates epidermal growth factor receptor activity essential for PDAC tumorigenesis

Abstract

Mucin4 (MUC4) appears early during pancreatic intraepithelial neoplasia-1 (PanIN1), coinciding with the expression of epidermal growth factor receptor-1 (EGFR). The EGFR signaling is required for the onset of Kras-driven pancreatic ductal adenocarcinoma (PDAC); however, the players and mechanisms involved in sustained EGFR signaling in early PanIN lesions remain elusive. We generated a unique Esai-CRISPR-based Muc4 conditional knockout murine model to evaluate its effect on PDAC pathology. The Muc4 depletion in the autochthonous murine model carrying K-ras and p53 mutations (K-rasG12D; TP53R172H; Pdx-1cre, KPC) to generate the KPCM4−/− murine model showed a significant delay in the PanIN lesion formation with a significant reduction (p < 0.01) in EGFR (Y1068) and ERK1/2 (T202/Y204) phosphorylation. Further, a significant decrease (p < 0.01) in Sox9 expression in PanIN lesions of KPCM4−/− mice suggested the impairment of acinar-to-ductal metaplasia in Muc4-depleted cells. The biochemical analyses demonstrated that MUC4, through its juxtamembrane EGF-like domains, interacts with the EGFR ectodomain, and its cytoplasmic tail prevents EGFR ubiquitination and subsequent proteasomal degradation upon ligand stimulation, leading to sustained downstream oncogenic signaling. Targeting the MUC4 and EGFR interacting interface provides a promising strategy to improve the efficacy of EGFR-targeted therapies in PDAC and other MUC4-expressing malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Muc4 depletion delays the initiation of PDAC.
Fig. 2: The early lesions in the pancreatic tissues of KPCM4−/− mice display significantly lower EGFR and ERK1/2 phosphorylation status.
Fig. 3: Muc4 depletion significantly reduces acinar-to-ductal metaplasia (ADM) in murine pancreatic tissues.
Fig. 4: Muc4 expression shows a significant correlation with EGFR activity in the differentiating ductal lesions in the pancreatic tissues.
Fig. 5: MUC4 interacts with EGFR upon ligand stimulation leading to sustained signaling.
Fig. 6: MUC4 expression maintains EGFR activity by preventing its ubiquitination upon ligand stimulation.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the manuscript and the Supplementary Materials.

References

  1. Schmid RM. Acinar-to-ductal metaplasia in pancreatic cancer development. J Clin Invest. 2002;109:1403–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu J, Akanuma N, Liu C, Naji A, Halff GA, Washburn WK, et al. TGF-β1 promotes acinar to ductal metaplasia of human pancreatic acinar cells. Sci Rep. 2016;6:30904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6:2969–72.

    CAS  PubMed  Google Scholar 

  4. Kopp JL, von Figura G, Mayes E, Liu FF, Dubois CL, Morris JP, et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;22:737–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wei D, Wang L, Yan Y, Jia Z, Gagea M, Li Z, et al. KLF4 is essential for induction of cellular identity change and acinar-to-ductal reprogramming during early pancreatic carcinogenesis. Cancer Cell. 2016;29:324–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Navas C, Hernández-Porras I, Schuhmacher AJ, Sibilia M, Guerra C, Barbacid M. EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell. 2012;22:318–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ardito CM, Grüner BM, Takeuchi KK, Lubeseder-Martellato C, Teichmann N, Mazur PK, et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell. 2012;22:304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perera RM, Bardeesy N. Ready, set, go: the EGF receptor at the pancreatic cancer starting line. Cancer Cell. 2012;22:281–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ligorio M, Sil S, Malagon-Lopez J, Nieman LT, Misale S, Di Pilato M, et al. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell. 2019;178:160–75.e127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC. Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell. 1990;61:1121–35.

    Article  CAS  PubMed  Google Scholar 

  11. Oliveira-Cunha M, Newman WG, Siriwardena AK. Epidermal growth factor receptor in pancreatic cancer. Cancers. 2011;3:1513–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Siveke JT, Crawford HC. KRAS above and beyond—EGFR in pancreatic cancer. Oncotarget. 2012;3:1262–3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tzeng CW, Frolov A, Frolova N, Jhala NC, Howard JH, Buchsbaum DJ, et al. Epidermal growth factor receptor (EGFR) is highly conserved in pancreatic cancer. Surgery. 2007;141:464–9.

    Article  PubMed  Google Scholar 

  14. Tomas A, Futter CE, Eden ER. EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol. 2014;24:26–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miaczynska M. Effects of membrane trafficking on signaling by receptor tyrosine kinases. Cold Spring Harb Perspect Biol. 2013;5:a009035.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60.

    Article  CAS  PubMed  Google Scholar 

  17. Pothuraju R, Rachagani S, Krishn SR, Chaudhary S, Nimmakayala RK, Siddiqui JA, et al. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer. 2020;19:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhatia R, Gautam SK, Cannon A, Thompson C, Hall BR, Aithal A, et al. Cancer-associated mucins: role in immune modulation and metastasis. Cancer Metastasis Rev. 2019;38:223–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gautam SK, Kumar S, Cannon A, Hall B, Bhatia R, Nasser MW, et al. MUC4 mucin—a therapeutic target for pancreatic ductal adenocarcinoma. Expert Opin Ther Targets. 2017;21:657–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaur S, Kumar S, Momi N, Sasson AR, Batra SK. Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol. 2013;10:607–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Economides AN, Frendewey D, Yang P, Dominguez MG, Dore AT, Lobov IB, et al. Conditionals by inversion provide a universal method for the generation of conditional alleles. Proc Natl Acad Sci USA. 2013;110:E3179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol. 2017;18:92.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Miura H, Quadros RM, Gurumurthy CB, Ohtsuka M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc. 2018;13:195–215.

    Article  CAS  PubMed  Google Scholar 

  24. Gurumurthy CB, O’Brien AR, Quadros RM, Adams J Jr, Alcaide P, Ayabe S, et al. Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biol. 2019;20:171.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gurumurthy CB, O’Brien AR, Quadros RM, Adams J Jr, Alcaide P, Ayabe S, et al. Response to correspondence on “Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation”. Genome Biol. 2021;22:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rachagani S, Torres MP, Kumar S, Haridas D, Baine M, Macha MA, et al. Mucin (Muc) expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy. J Hematol Oncol. 2012;5:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen NM, Singh G, Koenig A, Liou GY, Storz P, Zhang JS, et al. NFATc1 links EGFR signaling to induction of Sox9 transcription and acinar-ductal transdifferentiation in the pancreas. Gastroenterology. 2015;148:1024–34.e1029.

    Article  CAS  PubMed  Google Scholar 

  28. Ling S, Chang X, Schultz L, Lee TK, Chaux A, Marchionni L, et al. An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer. Cancer Res. 2011;71:3812–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar S, Torres MP, Kaur S, Rachagani S, Joshi S, Johansson SL, et al. Smoking accelerates pancreatic cancer progression by promoting differentiation of MDSCs and inducing HB-EGF expression in macrophages. Oncogene. 2015;34:2052–60.

    Article  CAS  PubMed  Google Scholar 

  30. Bhatia R, Bhyravbhatla N, Kisling A, Li X, Batra SK, Kumar S. Cytokines chattering in pancreatic ductal adenocarcinoma tumor microenvironment. Semin Cancer Biol. 2022;86:499–510.

  31. Ramasamy S, Duraisamy S, Barbashov S, Kawano T, Kharbanda S, Kufe D. The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. Mol Cell. 2007;27:992–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chaturvedi P, Singh AP, Chakraborty S, Chauhan SC, Bafna S, Meza JL, et al. MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res. 2008;68:2065–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shibata W, Kinoshita H, Hikiba Y, Sato T, Ishii Y, Sue S, et al. Overexpression of HER2 in the pancreas promotes development of intraductal papillary mucinous neoplasms in mice. Sci Rep. 2018;8:6150.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hsu SC, Hung MC. Characterization of a novel tripartite nuclear localization sequence in the EGFR family. J Biol Chem. 2007;282:10432–40.

    Article  CAS  PubMed  Google Scholar 

  35. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–50.

    Article  CAS  PubMed  Google Scholar 

  36. Siveke JT, Schmid RM. Chromosomal instability in mouse metastatic pancreatic cancer-it’s Kras and Tp53 after all. Cancer Cell. 2005;7:405–7.

    Article  CAS  PubMed  Google Scholar 

  37. Storz P. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat Rev Gastroenterol Hepatol. 2017;14:296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siveke JT, Einwächter H, Sipos B, Lubeseder-Martellato C, Klöppel G, Schmid RM. Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN. Cancer Cell. 2007;12:266–79.

    Article  CAS  PubMed  Google Scholar 

  39. Wagner M, Weber CK, Bressau F, Greten FR, Stagge V, Ebert M, et al. Transgenic overexpression of amphiregulin induces a mitogenic response selectively in pancreatic duct cells. Gastroenterology. 2002;122:1898–912.

    Article  CAS  PubMed  Google Scholar 

  40. Vasseur R, Skrypek N, Duchêne B, Renaud F, Martínez-Maqueda D, Vincent A, et al. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways. Biochim Biophys Acta. 2015;1849:1375–84.

    Article  CAS  PubMed  Google Scholar 

  41. Wang YN, Lee HH, Chou CK, Yang WH, Wei Y, Chen CT, et al. Angiogenin/ribonuclease 5 Is an EGFR ligand and a serum biomarker for erlotinib sensitivity in pancreatic cancer. Cancer Cell. 2018;33:752–69.e758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kitai Y, Iwakami M, Saitoh K, Togi S, Isayama S, Sekine Y, et al. STAP-2 protein promotes prostate cancer growth by enhancing epidermal growth factor receptor stabilization. J Biol Chem. 2017;292:19392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Al-Akhrass H, Naves T, Vincent F, Magnaudeix A, Durand K, Bertin F, et al. Sortilin limits EGFR signaling by promoting its internalization in lung cancer. Nat Commun. 2017;8:1182.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lakshmanan I, Seshacharyulu P, Haridas D, Rachagani S, Gupta S, Joshi S, et al. Novel HER3/MUC4 oncogenic signaling aggravates the tumorigenic phenotypes of pancreatic cancer cells. Oncotarget. 2015;6:21085–99.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Engle DD, Tiriac H, Rivera KD, Pommier A, Whalen S, Oni TE, et al. The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice. Science. 2019;364:1156–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hezel AF, Gurumurthy S, Granot Z, Swisa A, Chu GC, Bailey G, et al. Pancreatic LKB1 deletion leads to acinar polarity defects and cystic neoplasms. Mol Cell Biol. 2008;28:2414–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dey P, Rachagani S, Vaz AP, Ponnusamy MP, Batra SK. PD2/Paf1 depletion in pancreatic acinar cells promotes acinar-to-ductal metaplasia. Oncotarget. 2014;5:4480–91.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Harms DW, Quadros RM, Seruggia D, Ohtsuka M, Takahashi G, Montoliu L, et al. Mouse genome editing using the CRISPR/Cas system. Curr Protoc Hum Genet. 2014;83:15.17.11–27.

    Google Scholar 

  49. Kumar S, Das S, Rachagani S, Kaur S, Joshi S, Johansson SL, et al. NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer. Oncogene. 2015;34:4879–89.

    Article  CAS  PubMed  Google Scholar 

  50. Gruber R, Panayiotou R, Nye E, Spencer-Dene B, Stamp G, Behrens A. YAP1 and TAZ control pancreatic cancer initiation in mice by direct up-regulation of JAK-STAT3 signaling. Gastroenterology. 2016;151:526–39.

    Article  CAS  PubMed  Google Scholar 

  51. Ganguly K, Bhatia R, Rauth S, Kisling A, Atri P, Thompson C, et al. MUC5AC serves as the nexus for β-catenin/c-Myc interplay to promote glutamine dependency during pancreatic cancer chemoresistance. Gastroenterology. 2021;162:253–268.e13.

  52. Bhatia R, Muniyan S, Thompson CM, Kaur S, Jain M, Singh RK, et al. Neutrophil gelatinase-associated lipocalin protects acinar cells from cerulein-induced damage during acute pancreatitis. Pancreas. 2020;49:1297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thompson CM, Cannon A, West S, Ghersi D, Atri P, Bhatia R, et al. Mucin expression and splicing determine novel subtypes and patient mortality in pancreatic ductal adenocarcinoma. Clin Cancer Res. 2021;27:6787–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Imayavaramban Lakshmanan for providing Her2 silenced CD18/HPAF cell line. We thank Jessica Mercer for editing the manuscript. We thank the UNMC Department of Pathology for providing the patient tissue samples. We thank Saswati Karmakar and Ramesh Pothuraju for helping us in characterizing Muc4 COIN mice.

Funding

The authors/work was partly supported by funding from the National Institutes of Health (P01 CA217798, U01 CA210240, U01 CA200466, R01 CA206444, R21 AA026428, R01 CA228524, R01 CA247471, R01 CA254036, R01 CA256973, R01 CA263575, R01 CA273349, R01 CA218545, R01 CA241752, and R44 CA235991), and W81XWH-21-1-0640.

Author information

Authors and Affiliations

Authors

Contributions

RB performed biochemical analysis and wrote the manuscript. RB, JAS, NP, SKM, and XL generated and characterized KPCM4−/− murine model. KG performed I.H.C. experiments. CMT and AC performed bioinformatics analysis. AA generated the MUC4 monoclonal antibody. JLC scored I.H.C. slides. CBG helped in the generation of Muc4 COIN mice. SR, MJ, and MWN provided inputs in murine model studies. SK conceived the idea and designed the experiments. SK and SKB supervised the project and approved the manuscript.

Corresponding authors

Correspondence to Surinder K. Batra or Sushil Kumar.

Ethics declarations

Competing interests

SKB is a founder of Sanguine Diagnostics and Therapeutics, Inc. Other authors have no competing interests to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, R., Siddiqui, J.A., Ganguly, K. et al. Muc4 loss mitigates epidermal growth factor receptor activity essential for PDAC tumorigenesis. Oncogene 42, 759–770 (2023). https://doi.org/10.1038/s41388-022-02587-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02587-1

Search

Quick links