Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High levels of LINE-1 transposable elements expressed in Kaposi’s sarcoma-associated herpesvirus-related primary effusion lymphoma

Subjects

Abstract

Kaposi’s sarcoma-associated herpesvirus (KSHV, HHV-8) is a gamma herpesvirus associated with several human malignancies. Transposable elements (TEs) are ubiquitous in eukaryotic genomes, occupying about 45% of the human genome. TEs have been linked with a variety of disorders and malignancies, though the precise nature of their contribution to many of them has yet to be elucidated. Global transcriptome analysis for differentially expressed TEs in KSHV-associated primary effusion lymphoma (PEL) cells (BCBL1 and BC3) revealed large number of differentially expressed TEs. These differentially expressed TEs include LTR transposons, long interspersed nuclear elements (LINEs), and short interspersed nuclear elements (SINEs). Further analysis of LINE-1 (L1) elements revealed expression upregulation, hypo-methylation, and transition into open chromatin in PEL. In agreement with high L1 expression, PEL cells express ORF1 protein and possess high reverse transcriptase (RT)-activity. Interestingly, inhibition of this RT-activity suppressed PEL cell growth. Collectively, we identified high expression of TEs, and specifically of L1 as a critical component in the proliferation of PEL cells. This observation is relevant for the treatment of KSHV-associated malignancies since they often develop in AIDS patients that are treated with RT inhibitors with potent inhibition for both HIV and L1 RT activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High expression of LINE-1 in PEL cells.
Fig. 2: Expression of LINE-1 specific loci in PEL cells.
Fig. 3: Dysregulation of ERVs in PEL cells.
Fig. 4: Expression of ERVs specific loci in PEL cells.
Fig. 5: Hypo-methylation and open histone marks at LINE-1 in PEL cells.
Fig. 6: Dysregulation of TEs in KSHV de novo infected BJAB.219 cells.
Fig. 7: RT-inhibitors inhibit PEL cell proliferation.

Similar content being viewed by others

Data availability

RNA-seq data are available at http://biodb.md.biu.ac.il/biu/shamay_lab_data.html. Supplementary Information is available at the Oncogenes’s website.

References

  1. Henke-Gendo C, Schulz TF. Transmission and disease association of Kaposi’s sarcoma-associated herpesvirus: recent developments. Curr Opin Infect Dis. 2004;17:53–7.

    Article  PubMed  Google Scholar 

  2. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science. 1994;266:1865–9.

    Article  CAS  PubMed  Google Scholar 

  3. Klein U, Gloghini A, Gaidano G, Chadburn A, Cesarman E, Dalla-Favera R, et al. Gene expression profile analysis of AIDS-related primary effusion lymphoma (PEL) suggests a plasmablastic derivation and identifies PEL-specific transcripts. Blood. 2003;101:4115–21.

    Article  CAS  PubMed  Google Scholar 

  4. Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, Makinen T, et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet. 2004;36:687–93.

  5. Viollet C, Davis DA, Tekeste SS, Reczko M, Ziegelbauer JM, Pezzella F, et al. RNA sequencing reveals that kaposi sarcoma-associated herpesvirus infection mimics hypoxia gene expression signature. PLOS Pathog. 2017;13:e1006143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Poole LJ, Yu Y, Kim PS, Zheng QZ, Pevsner J, Hayward GS. Altered patterns of cellular gene expression in dermal microvascular endothelial cells infected with Kaposi’s sarcoma-associated herpesvirus. J Virol. 2002;76:3395–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  8. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7:e1002384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Alves G, Tatro A, Fanning T. Differential methylation of human LINE-1 retrotransposons in malignant cells. Gene. 1996;176:39–44.

    Article  CAS  PubMed  Google Scholar 

  10. Hata K, Sakaki Y. Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene. 1997;189:227–34.

    Article  CAS  PubMed  Google Scholar 

  11. Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet. 1998;20:116–7.

    Article  CAS  PubMed  Google Scholar 

  12. Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ, 3rd. et al. Landscape of somatic retrotransposition in human cancers. Science. 2012;337:967–71.

  13. Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genom Hum Genet. 2011;12:187–215.

    Article  CAS  Google Scholar 

  14. Sciamanna I, Landriscina M, Pittoggi C, Quirino M, Mearelli C, Beraldi R, et al. Inhibition of endogenous reverse transcriptase antagonizes human tumor growth. Oncogene. 2005;24:3923–31.

    Article  CAS  PubMed  Google Scholar 

  15. Tinari A, Superti F, Ammendolia MG, Chiozzini C, Hohenadl C, Leone P, et al. Primary effusion lymphoma cells undergoing human herpesvirus type 8 productive infection produce C-type retroviral particles. Int J Immunopathol Pharmacol. 2008;21:999–1006.

    Article  CAS  PubMed  Google Scholar 

  16. Dai L, Del Valle L, Miley W, Whitby D, Ochoa AC, Flemington EK, et al. Transactivation of human endogenous retrovirus K (HERV-K) by KSHV promotes Kaposi’s sarcoma development. Oncogene. 2018;37:4534–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity. 2001;15:579–89.

    Article  CAS  PubMed  Google Scholar 

  18. Sutkowski N, Chen G, Calderon G, Huber BT. Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J Virol. 2004;78:7852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karijolich J, Abernathy E, Glaunsinger BA. Infection-induced retrotransposon-derived noncoding RNAs enhance herpesviral gene expression via the NF-kappaB pathway. PLoS Pathog. 2015;11:e1005260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Journo G, Tushinsky C, Shterngas A, Avital N, Eran Y, Karpuj MV. et al. Modulation of cellular CpG DNA methylation by Kaposi’s sarcoma-associated herpesvirus. J Virol. 2018;92:e00008-18.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Babushok DV, Kazazian HH. Progress in understanding the biology of the human mutagen LINE-1. Hum Mutat. 2007;28:527–39.

    Article  CAS  PubMed  Google Scholar 

  22. Criscione SW, Theodosakis N, Micevic G, Cornish TC, Burns KH, Neretti N, et al. Genome-wide characterization of human L1 antisense promoter-driven transcripts. BMC Genom. 2016;17:463.

    Article  CAS  Google Scholar 

  23. Lee J, Cordaux R, Han K, Wang J, Hedges DJ, Liang P, et al. Different evolutionary fates of recently integrated human and chimpanzee LINE-1 retrotransposons. Gene. 2007;390:18–27.

    Article  CAS  PubMed  Google Scholar 

  24. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson WE. Endogenous retroviruses in the genomics era. Annu Rev Virol. 2015;2:135–59.

    Article  CAS  PubMed  Google Scholar 

  26. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21:103–7.

    Article  CAS  PubMed  Google Scholar 

  27. Jönsson ME, Ludvik Brattås P, Gustafsson C, Petri R, Yudovich D, Pircs K, et al. Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nat Commun. 2019;10:3182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Vieira J, O’Hearn PM. Use of the red fluorescent protein as a marker of Kaposi’s sarcoma-associated herpesvirus lytic gene expression. Virology. 2004;325:225–40.

    Article  CAS  PubMed  Google Scholar 

  29. Alisch RS, Garcia-Perez JL, Muotri AR, Gage FH, Moran JV. Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev. 2006;20:210–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ardeljan D, Wang X, Oghbaie M, Taylor MS, Husband D, Deshpande V, et al. LINE-1 ORF2p expression is nearly imperceptible in human cancers. Mob DNA. 2020;11:1.

    Article  CAS  PubMed  Google Scholar 

  31. Pizzato M, Erlwein O, Bonsall D, Kaye S, Muir D, McClure MO. A one-step SYBR Green I-based product-enhanced reverse transcriptase assay for the quantitation of retroviruses in cell culture supernatants. J Virol Methods. 2009;156:1–7.

    Article  CAS  PubMed  Google Scholar 

  32. Jones RB, Garrison KE, Wong JC, Duan EH, Nixon DF, Ostrowski MA. Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PloS ONE. 2008;3:e1547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dai L, Huang Q, Boeke JD. Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem. 2011;12:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patnala R, Lee SH, Dahlstrom JE, Ohms S, Chen L, Dheen ST, et al. Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells. Breast Cancer Res Treat. 2014;143:239–53.

    Article  CAS  PubMed  Google Scholar 

  35. Sciamanna I, Gualtieri A, Cossetti C, Osimo EF, Ferracin M, Macchia G, et al. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines. Oncotarget. 2013;4:2271–87.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oakes CC, Seifert M, Assenov Y, Gu L, Przekopowitz M, Ruppert AS, et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet. 2016;48:253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng Y, Hlady RA, Joyce BT, Robertson KD, He C, Nannini DR, et al. DNA methylation of individual repetitive elements in hepatitis C virus infection-induced hepatocellular carcinoma. Clin Epigenetics. 2019;11:145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Shukla R, Upton KR, Munoz-Lopez M, Gerhardt DJ, Fisher ME, Nguyen T, et al. Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell. 2013;153:101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tangkijvanich P, Hourpai N, Rattanatanyong P, Wisedopas N, Mahachai V, Mutirangura A. Serum LINE-1 hypomethylation as a potential prognostic marker for hepatocellular carcinoma. Clin Chim Acta. 2007;379:127–33.

    Article  CAS  PubMed  Google Scholar 

  40. Xie Y, Rosser JM, Thompson TL, Boeke JD, An W. Characterization of L1 retrotransposition with high-throughput dual-luciferase assays. Nucleic Acids Res. 2011;39:e16.

    Article  PubMed  CAS  Google Scholar 

  41. Nakayama R, Ueno Y, Ueda K, Honda T. Latent infection with Kaposi’s sarcoma-associated herpesvirus enhances retrotransposition of long interspersed element-1. Oncogene. 2019;38:4340–51.

    Article  CAS  PubMed  Google Scholar 

  42. Oricchio E, Sciamanna I, Beraldi R, Tolstonog GV, Schumann GG, Spadafora C. Distinct roles for LINE-1 and HERV-K retroelements in cell proliferation, differentiation and tumor progression. Oncogene. 2007;26:4226–33.

    Article  CAS  PubMed  Google Scholar 

  43. Landriscina M, Fabiano A, Altamura S, Bagalà C, Piscazzi A, Cassano A, et al. Reverse transcriptase inhibitors down-regulate cell proliferation in vitro and in vivo and restore thyrotropin signaling and iodine uptake in human thyroid anaplastic carcinoma. J Clin Endocrinol Metab. 2005;90:5663–71.

    Article  CAS  PubMed  Google Scholar 

  44. Burger D, van der Heiden I, la Porte C, van der Ende M, Groeneveld P, Richter C, et al. Interpatient variability in the pharmacokinetics of the HIV non-nucleoside reverse transcriptase inhibitor efavirenz: the effect of gender, race, and CYP2B6 polymorphism. Br J Clin Pharmacol. 2006;61:148–54.

    Article  CAS  PubMed  Google Scholar 

  45. Sharma M, Saravolatz LD. Rilpivirine: a new non-nucleoside reverse transcriptase inhibitor. J Antimicrob Chemother. 2013;68:250–6.

    Article  CAS  PubMed  Google Scholar 

  46. Crauwels H, van Heeswijk RP, Stevens M, Buelens A, Vanveggel S, Boven K, et al. Clinical perspective on drug-drug interactions with the non-nucleoside reverse transcriptase inhibitor rilpivirine. AIDS Rev. 2013;15:87–101.

    PubMed  Google Scholar 

  47. Gulick RM, Mellors JW, Havlir D, Eron JJ, Gonzalez C, McMahon D, et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med. 1997;337:734–9.

    Article  CAS  PubMed  Google Scholar 

  48. Collier AC, Coombs RW, Schoenfeld DA, Bassett RL, Timpone J, Baruch A, et al. Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and zalcitabine. AIDS Clinical Trials Group. N Engl J Med. 1996;334:1011–7.

    Article  CAS  PubMed  Google Scholar 

  49. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.

    Article  CAS  PubMed  Google Scholar 

  51. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  52. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  54. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  55. Goering W, Ribarska T, Schulz WA. Selective changes of retroelement expression in human prostate cancer. Carcinogenesis. 2011;32:1484–92.

    Article  CAS  PubMed  Google Scholar 

  56. Aschacher T, Wolf B, Enzmann F, Kienzl P, Messner B, Sampl S, et al. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines. Oncogene. 2016;35:94–104.

    Article  CAS  PubMed  Google Scholar 

  57. Menendez L, Benigno BB, McDonald JF. L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas. Mol Cancer. 2004;3:12.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Erichsen L, Beermann A, Arauzo-Bravo MJ, Hassan M, Dkhil MA, Al-Quraishy S, et al. Genome-wide hypomethylation of LINE-1 and Alu retroelements in cell-free DNA of blood is an epigenetic biomarker of human aging. Saudi J Biol Sci. 2018;25:1220–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vermeire J, Naessens E, Vanderstraeten H, Landi A, Iannucci V, Van Nuffel A, et al. Quantification of reverse transcriptase activity by real-time PCR as a fast and accurate method for titration of HIV, lenti- and retroviral vectors. PLoS ONE. 2012;7:e50859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tolani B, Gopalakrishnan R, Punj V, Matta H, Chaudhary PM. Targeting Myc in KSHV-associated primary effusion lymphoma with BET bromodomain inhibitors. Oncogene. 2014;33:2928–37.

    Article  CAS  PubMed  Google Scholar 

  61. Shamay M, Greenway M, Liao G, Ambinder RF, Hayward SD. De novo DNA methyltransferase DNMT3b interacts with NEDD8-modified proteins. J Biol Chem. 2010;285:36377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Diane hayward, Richard F. Ambinder, Jeffrey Vieira, Shou-Jiang (SJ) Gao, Milana Frenkel-Morgenstern, and Ronit Sarid for cell lines. This work was supported by grants from the Israel Science Foundation (https://www.isf.org.il) (1134/16), the Israel Cancer Association (20150095, 20161143) funded by the Walter Bela foundation, and a Research Career Development Award from the Israel Cancer Research Fund (https://www.icrfonline.org/) (01282) to MS. We are grateful for the support of the Elias, Genevieve, and Georgianna Atol Charitable Trust to the Daniella Lee Casper Laboratory in Viral Oncology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meir Shamay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahuja, A., Journo, G., Eitan, R. et al. High levels of LINE-1 transposable elements expressed in Kaposi’s sarcoma-associated herpesvirus-related primary effusion lymphoma. Oncogene 40, 536–550 (2021). https://doi.org/10.1038/s41388-020-01549-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01549-9

Search

Quick links