Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A review and guide to nutritional care of the infant with established bronchopulmonary dysplasia

Abstract

Bronchopulmonary dysplasia (BPD) remains the most common long-term morbidity of premature birth, and the incidence of BPD is not declining despite medical advancements. Infants with BPD are at high risk for postnatal growth failure and are often treated with therapies that suppress growth. Additionally, these infants may display excess weight gain relative to linear growth. Optimal growth and nutrition are needed to promote lung growth and repair, improve long-term pulmonary function, and improve neurodevelopmental outcomes. Linear growth in particular has been associated with favorable outcomes yet can be difficult to achieve in these patients. While there has been a significant clinical and research focus regarding BPD prevention and early preterm nutrition, there is a lack of literature regarding nutritional care of the infant with established BPD. There is even less information regarding how nutritional needs change as BPD evolves from an acute to chronic disease. This article reviews the current literature regarding nutritional challenges, enteral nutrition management, and monitoring for patients with established BPD. Additionally, this article provides a practical framework for interdisciplinary nutritional care based on our clinical experience at the Comprehensive Center for Bronchopulmonary Dysplasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors involved in the achievement of optimal growth.
Fig. 2: Characteristics, growth observations, and nutrition recommendations for infants with severe BPD.
Fig. 3: Change in z-scores for growth parameters between survival and discharge.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Patel RM. Short- and long-term outcomes for extremely preterm infants. Am J Perinatol. 2016;33:318–28. https://doi.org/10.1055/s-0035-1571202.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jensen EA, Edwards EM, Greenberg LT, Soll RF, Ehret DEY, Horbar JD. Severity of bronchopulmonary dysplasia among very preterm infants in the United States. Pediatrics. 2021;148:e2020030007 https://doi.org/10.1542/peds.2020-030007.

    Article  PubMed  Google Scholar 

  3. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9. https://doi.org/10.1164/ajrccm.163.7.2011060.

    Article  CAS  PubMed  Google Scholar 

  4. Abman SH, Collaco JM, Shepherd EG, Keszler M, Cuevas-Guaman M, Welty SE, et al. Bronchopulmonary dysplasia collaborative. interdisciplinary care of children with severe bronchopulmonary dysplasia. J Pediatr. 2017;181:12–28.e1. https://doi.org/10.1016/j.jpeds.2016.10.082.

    Article  PubMed  Google Scholar 

  5. Jensen EA, Dysart K, Gantz MG, McDonald S, Bamat NA, Keszler M, et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants. an evidence-based approach. Am J Respir Crit Care Med. 2019;200:751–9. https://doi.org/10.1164/rccm.201812-2348OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Murthy K, Porta NFM, Lagatta JM, Zaniletti I, Truog WE, Grover TR, et al. Inter-center variation in death or tracheostomy placement in infants with severe bronchopulmonary dysplasia. J Perinatol. 2017;37:723–7. https://doi.org/10.1038/jp.2016.277.

    Article  CAS  PubMed  Google Scholar 

  7. Arigliani M, Spinelli AM, Liguoro I, Cogo P. Nutrition and lung growth. Nutrients. 2018;10:919 https://doi.org/10.3390/nu10070919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Natarajan G, Johnson YR, Brozanski B, et al. Postnatal weight gain in preterm infants with severe bronchopulmonary dysplasia. Am J Perinatol. 2014;31:223–30. https://doi.org/10.1055/s-0033-1345264.

    Article  PubMed  Google Scholar 

  9. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. ESPGHAN Committee on Nutrition. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50:85–91. https://doi.org/10.1097/MPG.0b013e3181adaee0.

    Article  CAS  PubMed  Google Scholar 

  10. Dutta S, Singh B, Chessell L, Wilson J, Janes M, McDonald K, et al. Guidelines for feeding very low birth weight infants. Nutrients 2015;7:423–42. https://doi.org/10.3390/nu7010423.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Koletzko B, Cheah F-C, Domellof, M, Poindexter BB, Vain N, van Goudoever JB, editors. Nutritional care of preterm infants. Scientific basis and practical guidelines. World Review of Nutrition and Dietetics, vol 122. Basel: Karger; 2021. p. XII–XIV.

  12. Skinner AM, Narchi H. Preterm nutrition and neurodevelopmental outcomes. World J Methodol. 2021;11:278–93. https://doi.org/10.5662/wjm.v11.i6.278.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Poindexter BB, Martin CR. Impact of nutrition on bronchopulmonary dysplasia. Clin Perinatol. 2015;42:797–806. https://doi.org/10.1016/j.clp.2015.08.007.

    Article  PubMed  Google Scholar 

  14. Piersigilli F, Van Grambezen B, Hocq C, Danhaive O. Nutrients and microbiota in lung diseases of prematurity: the placenta-gut-lung triangle. Nutrients. 2020;12:469 https://doi.org/10.3390/nu12020469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma L, Zhou P, Neu J, Lin HC. Potential nutrients for preventing or treating bronchopulmonary dysplasia. Paediatr Respir Rev. 2017;22:83–88. https://doi.org/10.1016/j.prrv.2016.08.013.

    Article  PubMed  Google Scholar 

  16. Northway WH Jr, Moss RB, Carlisle KB, Parker BR, Popp RL, Pitlick PT, et al. Late pulmonary sequelae of bronchopulmonary dysplasia. N Engl J Med. 1990;323:1793–9. https://doi.org/10.1056/NEJM199012273232603.

    Article  PubMed  Google Scholar 

  17. Mataloun MM, Leone CR, Mascaretti RS, Dohlnikoff M, Rebello CM. Effect of postnatal malnutrition on hyperoxia-induced newborn lung development. Braz J Med Biol Res. 2009;42:606–13. https://doi.org/10.1590/s0100-879x2009000700004.

    Article  CAS  PubMed  Google Scholar 

  18. Frank L, Sosenko IR. Undernutrition as a major contributing factor in the pathogenesis of bronchopulmonary dysplasia. Am Rev Respir Dis. 1988;138:725–9. https://doi.org/10.1164/ajrccm/138.3.725.

    Article  CAS  PubMed  Google Scholar 

  19. Filbrun AG, Popova AP, Linn MJ, McIntosh NA, Hershenson MB. Longitudinal measures of lung function in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 2011;46:369–75. https://doi.org/10.1002/ppul.21378.

    Article  PubMed  Google Scholar 

  20. Bott L, Béghin L, Devos P, Pierrat V, Matran R, Gottrand F. Nutritional status at 2 years in former infants with bronchopulmonary dysplasia influences nutrition and pulmonary outcomes during childhood. Pediatr Res. 2006;60:340–4. https://doi.org/10.1203/01.pdr.0000232793.90186.ca.

    Article  PubMed  Google Scholar 

  21. Meyers JM, Tan S, Bell EF, Duncan AF, Guillet R, Stoll BJ, et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental outcomes among extremely premature infants with linear growth restriction. J Perinatol. 2019;39:193–202. https://doi.org/10.1038/s41372-018-0259-8.

    Article  CAS  PubMed  Google Scholar 

  22. Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006;117:1253–61. https://doi.org/10.1542/peds.2005-1368.

    Article  PubMed  Google Scholar 

  23. Pfister KM, Ramel SE. Linear growth and neurodevelopmental outcomes. Clin Perinatol. 2014;41:309–21. https://doi.org/10.1016/j.clp.2014.02.004.

    Article  PubMed  Google Scholar 

  24. Barrington KJ, Fortin-Pellerin E, Pennaforte T. Fluid restriction for treatment of preterm infants with chronic lung disease. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.cd005389.pub2.

  25. Roberts K, Stepanovich G, Bhatt-Mehta V, Donn SM. New pharmacologic approaches to bronchopulmonary dysplasia. J Exp Pharmacol. 2021;13:377–96. https://doi.org/10.2147/JEP.S262350.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rush MG, Engelhardt B, Parker RA, Hazinski TA. Double-blind, placebo-controlled trial of alternate-day furosemide therapy in infants with chronic bronchopulmonary dysplasia. J Pediatr. 1990 ;117:112–8. https://doi.org/10.1016/s0022-3476(05)82458-8.

    Article  CAS  PubMed  Google Scholar 

  27. Wassner SJ. Altered growth and protein turnover in rats fed sodium-deficient diets. Pediatr Res. 1989;26:608–13. https://doi.org/10.1203/00006450-198912000-00019.

    Article  CAS  PubMed  Google Scholar 

  28. Curtiss J, Zhang H, Griffiths P, Shepherd EG, Lynch S. Nutritional management of the infant with severe bronchopulmonary dysplasia. Neoreviews. 2015;16:e674–e679.

    Article  Google Scholar 

  29. Bamat NA, Kirpalani H, Feudtner C, Jensen EA, Laughon MM, Zhang H, et al. Medication use in infants with severe bronchopulmonary dysplasia admitted to United States children’s hospitals. J Perinatol. 2019;39:1291–9. https://doi.org/10.1038/s41372-019-0415-9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kielt MJ, Logan JW, Backes CH, Conroy S, Reber KM, Shepherd EG, et al. Noninvasive respiratory severity indices predict adverse outcomes in bronchopulmonary dysplasia. J Pediatr. 2022;242:129–136.e2. https://doi.org/10.1016/j.jpeds.2021.11.015.

    Article  PubMed  Google Scholar 

  31. Lewis T, Truog W, Nelin L, Napolitano N, McKinney RL. Pharmacoepidemiology of drug exposure in intubated and non-intubated preterm infants with severe bronchopulmonary dysplasia. Front Pharmacol. 2021;12:695270 https://doi.org/10.3389/fphar.2021.695270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leitch CA, Ahlrichs J, Karn C, Denne SC. Energy expenditure and energy intake during dexamethasone therapy for chronic lung disease. Pediatr Res. 1999;46:109–13. https://doi.org/10.1203/00006450-199907000-00018.

    Article  CAS  PubMed  Google Scholar 

  33. Van Goudoever JB, Wattimena JD, Carnielli VP, Sulkers EJ, Degenhart HJ, Sauer PJ. Effect of dexamethasone on protein metabolism in infants with bronchopulmonary dysplasia. J Pediatr. 1994;124:112–8. https://doi.org/10.1016/s0022-3476(94)70265-9.

    Article  PubMed  Google Scholar 

  34. Appel B, Fried SK. Effects of insulin and dexamethasone on lipoprotein lipase in human adipose tissue. Am J Physiol. 1992;262:E695–9. https://doi.org/10.1152/ajpendo.1992.262.5.E695.

    Article  CAS  PubMed  Google Scholar 

  35. Hauner H, Schmid P, Pfeiffer EF. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab. 1987;64:832–5. https://doi.org/10.1210/jcem-64-4-832.

    Article  CAS  PubMed  Google Scholar 

  36. Bauer SE, Huff KA, Vanderpool CPB, Rose RS, Cristea AI. Growth and nutrition in children with established bronchopulmonary dysplasia: a review of the literature. Nutr Clin Pract. 2022;37:282–98. https://doi.org/10.1002/ncp.10841.

    Article  PubMed  Google Scholar 

  37. Wang LY, Luo HJ, Hsieh WS, Hsu CH, Hsu HC, Chen PS, et al. Severity of bronchopulmonary dysplasia and increased risk of feeding desaturation and growth delay in very low birth weight preterm infants. Pediatr Pulmonol. 2010;45:165–73. https://doi.org/10.1002/ppul.21171.

    Article  PubMed  Google Scholar 

  38. Malkar MB, Gardner W, Welty SE, Jadcherla SR. Antecedent predictors of feeding outcomes in premature infants with protracted mechanical ventilation. J Pediatr Gastroenterol Nutr. 2015;61:591–5. https://doi.org/10.1097/MPG.0000000000000867.

    Article  PubMed  Google Scholar 

  39. Hatch LD, Scott TA, Walsh WF, Goldin AB, Blakely ML, Patrick SW. National and regional trends in gastrostomy in very low birth weight infants in the USA: 2000-2012. J Perinatol. 2018;38:1270–6. https://doi.org/10.1038/s41372-018-0145-4.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hansmann G, Sallmon H, Roehr CC, Kourembanas S, Austin ED, Koestenberger M. European Pediatric Pulmonary Vascular Disease Network (EPPVDN). Pulmonary hypertension in bronchopulmonary dysplasia. Pediatr Res. 2021;89:446–55. https://doi.org/10.1038/s41390-020-0993-4.

    Article  PubMed  Google Scholar 

  41. Rocha G, Guimarães H, Pereira-Da-Silva L. The role of nutrition in the prevention and management of bronchopulmonary dysplasia: a literature review and clinical approach. Int J Environ Res Public Health. 2021;18:6245 https://doi.org/10.3390/ijerph18126245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bozzetti V, De Angelis C, Tagliabue PE. Nutritional approach to preterm infants on noninvasive ventilation: an update. Nutrition. 2017;37:14–17. https://doi.org/10.1016/j.nut.2016.12.010.

    Article  PubMed  Google Scholar 

  43. Oh W. Fluid and electrolyte management of very low birth weight infants. Pediatr Neonatol. 2012;53:329–33. https://doi.org/10.1016/j.pedneo.2012.08.010.

    Article  PubMed  Google Scholar 

  44. Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A, et al. European consensus guidelines on the management of respiratory distress syndrome - 2019 update. Neonatology. 2019;115:432–50. https://doi.org/10.1159/000499361.

    Article  PubMed  Google Scholar 

  45. Biniwale MA, Ehrenkranz RA. The role of nutrition in the prevention and management of bronchopulmonary dysplasia. Semin Perinatol. 2006;30:200–8. https://doi.org/10.1053/j.semperi.2006.05.007.

    Article  PubMed  Google Scholar 

  46. Denne SC. Energy expenditure in infants with pulmonary insufficiency: is there evidence for increased energy needs? J Nutr. 2001;131:935S–937S. https://doi.org/10.1093/jn/131.3.935S.

    Article  CAS  PubMed  Google Scholar 

  47. De Meer K, Westerterp KR, Houwen RH, Brouwers HA, Berger R, Okken A. Total energy expenditure in infants with bronchopulmonary dysplasia is associated with respiratory status. Eur J Pediatr. 1997;156:299–304. https://doi.org/10.1007/s004310050605.

    Article  PubMed  Google Scholar 

  48. Kurzner SI, Garg M, Bautista DB, Bader D, Merritt RJ, Warburton D, et al. Growth failure in infants with bronchopulmonary dysplasia: nutrition and elevated resting metabolic expenditure. Pediatrics. 1988;81:379–84.

    Article  CAS  PubMed  Google Scholar 

  49. Groothuis JR, Makari D. Definition and outpatient management of the very low-birth-weight infant with bronchopulmonary dysplasia. Adv Ther. 2012;29:297–311. https://doi.org/10.1007/s12325-012-0015-y.

    Article  PubMed  Google Scholar 

  50. Fenton TR, Groh-Wargo S, Gura K, Martin CR, Taylor SN, Griffin IJ, et al. Effect of enteral protein amount on growth and health outcomes in very-low-birth-weight preterm infants: phase II of the pre-B project and an evidence analysis center systematic review. J Acad Nutr Diet. 2021;121:2287–2300.e12. https://doi.org/10.1016/j.jand.2020.11.002.

    Article  PubMed  Google Scholar 

  51. Brunton JA, Saigal S, Atkinson SA. Growth and body composition in infants with bronchopulmonary dysplasia up to 3 months corrected age: a randomized trial of a high-energy nutrient-enriched formula fed after hospital discharge. J Pediatr. 1998;133:340–5. https://doi.org/10.1016/s0022-3476(98)70266-5.

    Article  CAS  PubMed  Google Scholar 

  52. Giannì ML, Roggero P, Colnaghi MR, Piemontese P, Amato O, Orsi A, et al. The role of nutrition in promoting growth in pre-term infants with bronchopulmonary dysplasia: a prospective non-randomised interventional cohort study. BMC Pediatr. 2014;14:235 https://doi.org/10.1186/1471-2431-14-235.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pereira GR, Baumgart S, Bennett MJ, Stallings VA, Georgieff MK, Hamosh M, et al. Use of high-fat formula for premature infants with bronchopulmonary dysplasia: metabolic, pulmonary, and nutritional studies. J Pediatr. 1994;124:605–11. https://doi.org/10.1016/s0022-3476(05)83143-9.

    Article  CAS  PubMed  Google Scholar 

  54. Eidelman AI. Breastfeeding and the use of human milk: an analysis of the American Academy of Pediatrics 2012 Breastfeeding Policy Statement. Breastfeed Med. 2012;7:323–4. https://doi.org/10.1089/bfm.2012.0067.

    Article  PubMed  Google Scholar 

  55. Kim LY, McGrath-Morrow SA, Collaco JM. Impact of breast milk on respiratory outcomes in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 2019;54:313–8. https://doi.org/10.1002/ppul.24228.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Morgan JA, Young L, McCormick FM, McGuire W. Promoting growth for preterm infants following hospital discharge. Arch Dis Child Fetal Neonatal Ed. 2012;97:F295–8. https://doi.org/10.1136/adc.2009.170910.

    Article  CAS  PubMed  Google Scholar 

  57. Massaro D, Massaro GD. Retinoids, alveolus formation, and alveolar deficiency: clinical implications. Am J Respir Cell Mol Biol. 2003;28:271–4. https://doi.org/10.1165/rcmb.F263.

    Article  CAS  PubMed  Google Scholar 

  58. Mandell E, Seedorf G, Gien J, Abman SH. Vitamin D treatment improves survival and infant lung structure after intra-amniotic endotoxin exposure in rats: potential role for the prevention of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2014;306:L420–8. https://doi.org/10.1152/ajplung.00344.2013.

    Article  CAS  PubMed  Google Scholar 

  59. Mehta NM. Clinical guidelines: nutrition support of the critically ill child. J Parenter Enter Nutr. 2009;33:260–76. https://doi.org/10.1177/0148607109333114.

    Article  Google Scholar 

  60. Bischoff AR, Tomlinson C, Belik J. Sodium intake requirements for preterm neonates: review and recommendations. J Pediatr Gastroenterol Nutr. 2016;63:e123–e129. https://doi.org/10.1097/MPG.0000000000001294.

    Article  CAS  PubMed  Google Scholar 

  61. Domellöf M, Georgieff MK. Postdischarge iron requirements of the preterm infant. J Pediatr. 2015;167:S31–5. https://doi.org/10.1016/j.jpeds.2015.07.018.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Terrin G, Berni Canani R, Di Chiara M, Pietravalle A, Aleandri V, Conte F, et al. Zinc in early life: a key element in the fetus and preterm neonate. Nutrients. 2015;7:10427–46. https://doi.org/10.3390/nu7125542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vázquez-Gomis R, Bosch-Gimenez V, Juste-Ruiz M, Vázquez-Gomis C, Izquierdo-Fos I, Pastor-Rosado J. Zinc concentration in preterm newborns at term age, a prospective observational study. BMJ Paediatr Open. 2019;3:e000527 https://doi.org/10.1136/bmjpo-2019-000527.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shaikhkhalil AK, Curtiss J, Puthoff TD, Valentine CJ. Enteral zinc supplementation and growth in extremely-low-birth-weight infants with chronic lung disease. J Pediatr Gastroenterol Nutr. 2014;58:183–7. https://doi.org/10.1097/MPG.0000000000000145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cohen N, Golik A. Zinc balance and medications commonly used in the management of heart failure. Heart Fail Rev. 2006;11:19–24. https://doi.org/10.1007/s10741-006-9189-1.

    Article  CAS  PubMed  Google Scholar 

  66. Logan JW, Lynch SK, Curtiss J, Shepherd EG. Clinical phenotypes and management concepts for severe, established bronchopulmonary dysplasia. Paediatr Respir Rev. 2019;31:58–63. https://doi.org/10.1016/j.prrv.2018.10.004.

    Article  PubMed  Google Scholar 

  67. Underwood MA, Lakshminrusimha S, Steinhorn RH, Wedgwood S. Malnutrition, poor post-natal growth, intestinal dysbiosis and the developing lung. J Perinatol. 2021;41:1797–810. https://doi.org/10.1038/s41372-020-00858-x.

    Article  PubMed  Google Scholar 

  68. Ehrenkranz RA, Das A, Wrage LA, et al. Early nutrition mediates the influence of severity of illness on extremely LBW infants. Pediatr Res. 2011;69:522–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jensen EA, Zhang H, Feng R, Dysart K, Nilan K, Munson DA, et al. Individualising care in severe bronchopulmonary dysplasia: a series of N-of-1 trials comparing transpyloric and gastric feeding. Arch Dis Child Fetal Neonatal Ed. 2020;105:399–404. https://doi.org/10.1136/archdischild-2019-317148.

    Article  PubMed  Google Scholar 

  70. Mehta NM. Energy expenditure: how much does it matter in infant and pediatric chronic disorders? Pediatr Res. 2015;77:168–72. https://doi.org/10.1038/pr.2014.180.

    Article  PubMed  Google Scholar 

  71. Institute of Medicine. Dietary reference intakes: the essential guide to nutrient requirements. Washington, DC: The National Academies Press; 2006. https://doi.org/10.17226/11537.

  72. Corkins MR, Balint J, Plogsted S, Yaworski JA, editors. ASPEN Pediatric Nutrition Support Core Curriculum. 2nd ed., Ch. 32. ASPEN; 2018.

  73. Kielt MJ, Logan JW, Backes CH, Reber KM, Nelin LD, Shepherd EG. In-hospital outcomes of late referrals for established bronchopulmonary dysplasia. J Perinatol. 2021;41:1972–82. https://doi.org/10.1038/s41372-021-01041-6.

    Article  CAS  PubMed  Google Scholar 

  74. Fenton TR, Anderson D, Groh-Wargo S, Hoyos A, Ehrenkranz RA, Senterre T. An attempt to standardize the calculation of growth velocity of preterm infants-evaluation of practical bedside methods. J Pediatr. 2018;196:77–83. https://doi.org/10.1016/j.jpeds.2017.10.005.

    Article  PubMed  Google Scholar 

  75. Pereira-da-Silva L, Virella D, Fusch C. Nutritional assessment in preterm infants: a practical approach in the NICU. Nutrients 2019;11:1999 https://doi.org/10.3390/nu11091999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Madden J, Kobaly K, Minich NM, Schluchter M, Wilson-Costello D, Hack M. Improved weight attainment of extremely low-gestational-age infants with bronchopulmonary dysplasia. J Perinatol. 2010;30:103–11. https://doi.org/10.1038/jp.2009.142.

    Article  CAS  PubMed  Google Scholar 

  77. Miller AN, Moise AA, Cottrell L, Loomis K, Polak M, Gest A. Linear growth is associated with successful respiratory support weaning in infants with bronchopulmonary dysplasia. J Perinatol. 2022;42:544–5. https://doi.org/10.1038/s41372-022-01322-8.

    Article  PubMed  Google Scholar 

  78. Sanchez-Solis M, Perez-Fernandez V, Bosch-Gimenez V, Quesada JJ, Garcia-Marcos L. Lung function gain in preterm infants with and without bronchopulmonary dysplasia. Pediatr Pulmonol. 2016;51:936–42. https://doi.org/10.1002/ppul.23393.

    Article  PubMed  Google Scholar 

  79. Wood AJ, Raynes-Greenow CH, Carberry AE, Jeffery HE. Neonatal length inaccuracies in clinical practice and related percentile discrepancies detected by a simple length-board. J Paediatr Child Health. 2013;49:199–203. https://doi.org/10.1111/jpc.12119.

    Article  PubMed  Google Scholar 

  80. Nelin TD, Lorch S, Jensen EA, Alexiou S, Gibbs K, Napolitano N, et al. The association between diuretic class exposures and enteral electrolyte use in infants developing grade 2 or 3 bronchopulmonary dysplasia in United States children’s hospitals. J Perinatol. 2021;41:779–85. https://doi.org/10.1038/s41372-021-00924-y.

    Article  CAS  PubMed  Google Scholar 

  81. Bott L, Béghin L, Marichez C, Gottrand F. Comparison of resting energy expenditure in bronchopulmonary dysplasia to predicted equation. Eur J Clin Nutr. 2006;60:1323–9. https://doi.org/10.1038/sj.ejcn.1602463.

    Article  CAS  PubMed  Google Scholar 

  82. Sion-Sarid R, Cohen J, Houri Z, Singer P. Indirect calorimetry: a guide for optimizing nutritional support in the critically ill child. Nutrition. 2013;29:1094–9. https://doi.org/10.1016/j.nut.2013.03.013.

    Article  PubMed  Google Scholar 

  83. Gaio P, Verlato G, Daverio M, Cavicchiolo ME, Nardo D, Pasinato A, et al. Incidence of metabolic bone disease in preterm infants of birth weight <1250 g and in those suffering from bronchopulmonary dysplasia. Clin Nutr Espen. 2018;23:234–9. https://doi.org/10.1016/j.clnesp.2017.09.008.

    Article  PubMed  Google Scholar 

  84. Chen W, Zhang Z, Dai S, Xu L. Risk factors for metabolic bone disease among preterm infants less than 32 weeks gestation with Bronchopulmonary dysplasia. BMC Pediatr. 2021;21:235 https://doi.org/10.1186/s12887-021-02705-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jensen EA, White AM, Liu P, Yee K, Waber B, Monk HM, et al. Determinants of severe metabolic bone disease in very low-birth-weight infants with severe bronchopulmonary dysplasia admitted to a tertiary referral center. Am J Perinatol. 2016;33:107–13. https://doi.org/10.1055/s-0035-1560043.

    Article  PubMed  Google Scholar 

  86. Chinoy A, Mughal MZ, Padidela R. Metabolic bone disease of prematurity: causes, recognition, prevention, treatment and long-term consequences. Arch Dis Child Fetal Neonatal Ed. 2019;104:F560–F566. https://doi.org/10.1136/archdischild-2018-316330.

    Article  PubMed  Google Scholar 

  87. Wood CL, Wood AM, Harker C, Embleton ND. Bone mineral density and osteoporosis after preterm birth: the role of early life factors and nutrition. Int J Endocrinol. 2013;2013:902513 https://doi.org/10.1155/2013/902513.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pravia CI, Benny M. Long-term consequences of prematurity. Cleve Clin J Med. 2020;87:759–67. https://doi.org/10.3949/ccjm.87a.19108.

    Article  PubMed  Google Scholar 

  89. Abrams SA, Committee on Nutrition. Calcium and vitamin d requirements of enterally fed preterm infants. Pediatrics. 2013;131:e1676–83. https://doi.org/10.1542/peds.2013-0420.

    Article  PubMed  Google Scholar 

  90. Tkach EK, White AM, Dysart KC, Waber B, Nawab US, Zhang H, et al. Comparison of intact parathyroid hormone, alkaline phosphatase, phosphate levels for diagnosing severe metabolic bone disease in infants with severe bronchopulmonary dysplasia. Am J Perinatol. 2017;34:1199–204. https://doi.org/10.1055/s-0037-1602419.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ohio Perinatal Research Network (OPRN) at Nationwide Children’s Hospital. OPRN is supported by the Center for Perinatal Research at Nationwide Children’s Hospital. Funding is provided by the Abigail Wexner Research Institute at Nationwide Children’s Hospital. No funding was received for this review.

Author information

Authors and Affiliations

Authors

Contributions

AM and JC drafted the manuscript, table, and figures.  AM, JC, ST, CB, and MK participated in review of the manuscript.

Corresponding author

Correspondence to Audrey N. Miller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, A.N., Curtiss, J., Taylor, S.N. et al. A review and guide to nutritional care of the infant with established bronchopulmonary dysplasia. J Perinatol 43, 402–410 (2023). https://doi.org/10.1038/s41372-022-01578-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-022-01578-0

This article is cited by

Search

Quick links