Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Resistin facilitates breast cancer progression via TLR4-mediated induction of mesenchymal phenotypes and stemness properties

Abstract

Growing evidence indicates that resistin—an obesity-related cytokine—is upregulated in breast cancer patients, yet its impact on breast cancer behavior remains to be ascertained. Similarly, Toll-like receptor 4 (TLR4) has been implicated in breast cancer progression, however, its clinically relevant endogenous ligand remains elusive. In this study, we observed that high serum resistin levels in breast cancer patients positively correlated with tumor stage, size and lymph node metastasis. These findings were replicated in animal models of breast cancer tumorigenesis and metastasis. Resistin was found to promote epithelial–mesenchymal transition and stemness in breast cancer cells—mechanisms critical to tumorigenesis and metastasis—through a TLR4/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/signal transducer and activator of transcription 3 (STAT3) signaling pathway and negated by TLR4-specific antibody and antagonist. These findings provide clear evidence that resistin is a clinically relevant endogenous ligand for TLR4, which promotes tumor progression via TLR4/NF-κB/STAT3 signaling, providing insights into a novel therapeutic target in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Conde J, Scotece M, Gomez R, Lopez V, Gomez-Reino JJ, Lago F et al. Adipokines: biofactors from white adipose tissue. A complex hub among inflammation, metabolism, and immunity. Biofactors 2011; 37: 413–420.

    Article  CAS  PubMed  Google Scholar 

  2. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM et al. The hormone resistin links obesity to diabetes. Nature 2001; 409: 307–312.

    Article  CAS  PubMed  Google Scholar 

  3. Patel L, Buckels AC, Kinghorn IJ, Murdock PR, Holbrook JD, Plumpton C et al. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun 2003; 300: 472–476.

    Article  CAS  PubMed  Google Scholar 

  4. McTernan CL, McTernan PG, Harte AL, Levick PL, Barnett AH, Kumar S . Resistin, central obesity, and type 2 diabetes. Lancet 2002; 359: 46–47.

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz DR, Lazar MA . Human resistin: found in translation from mouse to man. Trends Endocrinol Metab 2011; 22: 259–265.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Codoner-Franch P, Alonso-Iglesias E . Resistin: insulin resistance to malignancy. Clin Chim Acta 2015; 438: 46–54.

    Article  CAS  PubMed  Google Scholar 

  7. Lopez-Novoa JM, Nieto MA . Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 2009; 1: 303–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peinado H, Olmeda D, Cano A . Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–428.

    Article  CAS  PubMed  Google Scholar 

  9. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S et al. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 2010; 101: 293–299.

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez DM, Medici D . Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 2014; 7: re8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA . Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res 2011; 13: 202.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li L, Cole J, Margolin DA . Cancer stem cell and stromal microenvironment. Ochsner J 2013; 13: 109–118.

    PubMed  PubMed Central  Google Scholar 

  14. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iqbal J, Chong PY, Tan PH . Breast cancer stem cells: an update. J Clin Pathol 2013; 66: 485–490.

    Article  CAS  PubMed  Google Scholar 

  16. Lee YC, Chen YJ, Wu CC, Lo S, Hou MF, Yuan SS . Resistin expression in breast cancer tissue as a marker of prognosis and hormone therapy stratification. Gynecol Oncol 2012; 125: 742–750.

    Article  CAS  PubMed  Google Scholar 

  17. Assiri AM, Kamel HF, Hassanien MF . Resistin, visfatin, adiponectin, and leptin: risk of breast cancer in pre- and postmenopausal Saudi females and their possible diagnostic and predictive implications as novel biomarkers. Dis Markers 2015; 2015: 253519.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Drasin DJ, Robin TP, Ford HL . Breast cancer epithelial-to-mesenchymal transition: examining the functional consequences of plasticity. Breast Cancer Res 2011; 13: 226.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 2008; 10: R52.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005; 65: 5506–5511.

    Article  CAS  PubMed  Google Scholar 

  21. Hu Y, Smyth GK . ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 2009; 347: 70–78.

    Article  CAS  PubMed  Google Scholar 

  22. Chung SS, Vadgama JV . Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFkappaB signaling. Anticancer Res 2015; 35: 39–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang X, Zhao X, Shao S, Zuo X, Ning Q, Luo M et al. Notch1 induces epithelial-mesenchymal transition and the cancer stem cell phenotype in breast cancer cells and STAT3 plays a key role. Int J Oncol 2015; 46: 1141–1148.

    Article  CAS  PubMed  Google Scholar 

  24. Wang W, Nag SA, Zhang R . Targeting the NFkappaB signaling pathways for breast cancer prevention and therapy. Curr Med Chem 2015; 22: 264–289.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gonzalez-Reyes S, Marin L, Gonzalez L, Gonzalez LO, del Casar JM, Lamelas ML et al. Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis. BMC Cancer 2010; 10: 665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ehsan N, Murad S, Ashiq T, Mansoor MU, Gul S, Khalid S et al. Significant correlation of TLR4 expression with the clinicopathological features of invasive ductal carcinoma of the breast. Tumour Biol 2013; 34: 1053–1059.

    Article  CAS  PubMed  Google Scholar 

  27. Tarkowski A, Bjersing J, Shestakov A, Bokarewa MI . Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J Cell Mol Med 2010; 14: 1419–1431.

    Article  CAS  PubMed  Google Scholar 

  28. Kawai T, Akira S . TLR signaling. Cell Death Differ 2006; 13: 816–825.

    Article  CAS  PubMed  Google Scholar 

  29. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F . Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374: 1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Syed V, Ulinski G, Mok SC, Ho SM . Reproductive hormone-induced, STAT3-mediated interleukin 6 action in normal and malignant human ovarian surface epithelial cells. J Natl Cancer Inst 2002; 94: 617–629.

    Article  CAS  PubMed  Google Scholar 

  31. Teng Y, Xie X, Walker S, White DT, Mumm JS, Cowell JK . Evaluating human cancer cell metastasis in zebrafish. BMC Cancer 2013; 13: 453.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hwang-Verslues WW, Kuo WH, Chang PH, Pan CC, Wang HH, Tsai ST et al. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One 2009; 4: e8377.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhou C, Liu J, Tang Y, Liang X . Inflammation linking EMT and cancer stem cells. Oral Oncol 2012; 48: 1068–1075.

    Article  CAS  PubMed  Google Scholar 

  34. Wendt MK, Balanis N, Carlin CR, Schiemann WP . STAT3 and epithelial-mesenchymal transitions in carcinomas. JAKSTAT 2014; 3: e28975.

    PubMed  PubMed Central  Google Scholar 

  35. Yu H, Lee H, Herrmann A, Buettner R, Jove R . Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 2014; 14: 736–746.

    Article  CAS  PubMed  Google Scholar 

  36. Shostak K, Chariot A . NF-kappaB, stem cells and breast cancer: the links get stronger. Breast Cancer Res 2011; 13: 214.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee JO, Kim N, Lee HJ, Lee YW, Kim SJ, Park SH et al. Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation. Sci Rep 2016; 6: 18923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mehmeti M, Allaoui R, Bergenfelz C, Saal LH, Ethier SP, Johansson ME et al. Expression of functional toll like receptor 4 in estrogen receptor/progesterone receptor-negative breast cancer. Breast Cancer Res 2015; 17: 130.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen YH, Lee MJ, Chang HH, Hung PF, Kao YH . 17 Beta-estradiol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor, extracellularly regulated kinase, and CCAAT/enhancer binding protein-alpha pathways. Endocrinology 2006; 147: 4496–4504.

    Article  CAS  PubMed  Google Scholar 

  40. Lee MJ, Lin H, Liu CW, Wu MH, Liao WJ, Chang HH et al. Octylphenol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor and extracellular signal-regulated kinase pathways. Am J Physiol Cell Physiol 2008; 294: C1542–C1551.

    Article  CAS  PubMed  Google Scholar 

  41. Franco HL, Nagari A, Kraus WL . TNFalpha signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome. Mol Cell 2015; 58: 21–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Frasor J, Weaver A, Pradhan M, Dai Y, Miller LD, Lin CY et al. Positive cross-talk between estrogen receptor and NF-kappaB in breast cancer. Cancer Res 2009; 69: 8918–8925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pradhan M, Bembinster LA, Baumgarten SC, Frasor J . Proinflammatory cytokines enhance estrogen-dependent expression of the multidrug transporter gene ABCG2 through estrogen receptor and NF{kappa}B cooperativity at adjacent response elements. J Biol Chem 2010; 285: 31100–31106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oblak A, Jerala R . Toll-like receptor 4 activation in cancer progression and therapy. Clin Dev Immunol 2011; 2011: 609579.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bauer AK, Dixon D, DeGraff LM, Cho HY, Walker CR, Malkinson AM et al. Toll-like receptor 4 in butylated hydroxytoluene-induced mouse pulmonary inflammation and tumorigenesis. J Natl Cancer Inst 2005; 97: 1778–1781.

    Article  CAS  PubMed  Google Scholar 

  46. Jing YY, Han ZP, Sun K, Zhang SS, Hou J, Liu Y et al. Toll-like receptor 4 signaling promotes epithelial-mesenchymal transition in human hepatocellular carcinoma induced by lipopolysaccharide. BMC Med 2012; 10: 98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang H, Wang B, Wang T, Xu L, He C, Wen H et al. Toll-like receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis. PLoS One 2014; 9: e109980.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Song J, Duncan MJ, Li G, Chan C, Grady R, Stapleton A et al. A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells. PLoS Pathog 2007; 3: e60.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yokota S, Okabayashi T, Rehli M, Fujii N, Amano K . Helicobacter pylori lipopolysaccharides upregulate toll-like receptor 4 expression and proliferation of gastric epithelial cells via the MEK1/2-ERK1/2 mitogen-activated protein kinase pathway. Infect Immun 2010; 78: 468–476.

    Article  CAS  PubMed  Google Scholar 

  50. Hsieh YY, Shen CH, Huang WS, Chin CC, Kuo YH, Hsieh MC et al. Resistin-induced stromal cell-derived factor-1 expression through Toll-like receptor 4 and activation of p38 MAPK/ NFkappaB signaling pathway in gastric cancer cells. J Biomed Sci 2014; 21: 59.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Tsung-Hsien Chuang and Dr Wen-Chun Hung from National Health Research Institutes, Taiwan, for providing plasmid. This work was supported by Kaohsiung Medical University Hospital (KMUH102-2T07, KMUH103-3R28, KMUH104-4R29); Kaohsiung Medical University (Aim for the Top Journals Grant, KMU-DT105008, KMU-TP104D17); National Health Research Institutes (NHRI-EX104-10212BI); and Ministry of Health and Welfare, Health and welfare surcharge of tobacco products (MOHW105-TDU-B-212-134007) of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-SF Yuan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CH., Wang, PJ., Hsieh, YC. et al. Resistin facilitates breast cancer progression via TLR4-mediated induction of mesenchymal phenotypes and stemness properties. Oncogene 37, 589–600 (2018). https://doi.org/10.1038/onc.2017.357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.357

This article is cited by

Search

Quick links