Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

FOXP3 can modulate TAL1 transcriptional activity through interaction with LMO2

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) frequently involves aberrant expression of TAL1 (T-cell acute lymphocytic leukemia 1) and LMO2, oncogenic members of the TAL1 transcriptional complex. Transcriptional activity of the TAL1-complex is thought to have a pivotal role in the transformation of thymocytes and is associated with a differentiation block and self-renewal. The transcription factor Forkhead Box P3 (FOXP3) was recently described to be expressed in a variety of malignancies including T-ALL. Here we show that increased FOXP3 levels negatively correlate with expression of genes regulated by the oncogenic TAL1-complex in human T-ALL patient samples as well as a T-ALL cell line ectopically expressing FOXP3. In these cells, FOXP3 expression results in altered regulation of cell cycle progression and reduced cell viability. Finally, we demonstrate that FOXP3 binds LMO2 in vitro, resulting in decreased interaction between LMO2 and TAL1, providing a molecular mechanism for FOXP3-mediated transcriptional modulation in T-ALL. Collectively, our findings provide initial evidence for a novel role of FOXP3 as a tumor suppressor in T-ALL through modulation of TAL1 transcriptional activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aifantis I, Raetz E, Buonamici S . Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008; 8: 380–390.

    Article  CAS  PubMed  Google Scholar 

  2. Van Vlierberghe P, Ferrando A . The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012; 122: 3398–3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  4. Tremblay M, Tremblay CS, Herblot S, Aplan PD, Hebert J, Perreault C et al. Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Genes Dev 2010; 24: 1093–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cardoso BA, de Almeida SF, Laranjeira AB, Carmo-Fonseca M, Yunes JA, Coffer PJ et al. TAL1/SCL is downregulated upon histone deacetylase inhibition in T-cell acute lymphoblastic leukemia cells. Leukemia 2011; 25: 1578–1586.

    Article  CAS  PubMed  Google Scholar 

  6. Grutz GG, Bucher K, Lavenir I, Larson T, Larson R, Rabbitts TH . The oncogenic T cell LIM-protein Lmo2 forms part of a DNA-binding complex specifically in immature T cells. EMBO J 1998; 17: 4594–4605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 1997; 16: 3145–3157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Larson RC, Lavenir I, Larson TA, Baer R, Warren AJ, Wadman I et al. Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J 1996; 15: 1021–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Condorelli GL, Facchiano F, Valtieri M, Proietti E, Vitelli L, Lulli V et al. T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice. Cancer Res 1996; 56: 5113–5119.

    CAS  PubMed  Google Scholar 

  10. McCormack MP, Young LF, Vasudevan S, de Graaf CA, Codrington R, Rabbitts TH et al. The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science 2010; 327: 879–883.

    Article  CAS  PubMed  Google Scholar 

  11. Herblot S, Steff AM, Hugo P, Aplan PD, Hoang T . SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol 2000; 1: 138–144.

    Article  CAS  PubMed  Google Scholar 

  12. Palomero T, Odom DT, O'Neil J, Ferrando AA, Margolin A, Neuberg DS et al. Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia. Blood 2006; 108: 986–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 2012; 22: 209–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Correia NC, Durinck K, Leite AP, Ongenaert M, Rondou P, Speleman F et al. Novel TAL1 targets beyond protein-coding genes: identification of TAL1-regulated microRNAs in T-cell acute lymphoblastic leukemia. Leukemia 2013; 27: 1603–1606.

    Article  CAS  PubMed  Google Scholar 

  15. Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD et al. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med 2013; 210: 1545–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fontenot JD, Gavin MA, Rudensky AY . Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330–336.

    Article  CAS  PubMed  Google Scholar 

  17. Khattri R, Cox T, Yasayko SA, Ramsdell F . An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4: 337–342.

    Article  CAS  PubMed  Google Scholar 

  18. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27: 68–73.

    Article  CAS  PubMed  Google Scholar 

  19. Gavin MA, Torgerson TR, Houston E, DeRoos P, Ho WY, Stray-Pedersen A et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci USA 2006; 103: 6659–6664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE . Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 2007; 37: 129–138.

    Article  CAS  PubMed  Google Scholar 

  21. Tuovinen H, Pekkarinen PT, Rossi LH, Mattila I, Arstila TP . The FOXP3+ subset of human CD4+CD8+ thymocytes is immature and subject to intrathymic selection. Immunol Cell Biol 2008; 86: 523–529.

    Article  CAS  PubMed  Google Scholar 

  22. Chen GY, Chen C, Wang L, Chang X, Zheng P, Liu Y . Cutting edge: broad expression of the FoxP3 locus in epithelial cells: a caution against early interpretation of fatal inflammatory diseases following in vivo depletion of FoxP3-expressing cells. J Immunol 2008; 180: 5163–5166.

    Article  CAS  PubMed  Google Scholar 

  23. Karanikas V, Speletas M, Zamanakou M, Kalala F, Loules G, Kerenidi T et al. Foxp3 expression in human cancer cells. J Transl Med 2008; 6: 19.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ma GF, Chen SY, Sun ZR, Miao Q, Liu YM, Zeng XQ et al. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway. Biochem Biophys Res Commun 2013; 430: 804–809.

    Article  CAS  PubMed  Google Scholar 

  25. Zuo T, Liu R, Zhang H, Chang X, Liu Y, Wang L et al. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest 2007; 117: 3765–3773.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zuo T, Wang L, Morrison C, Chang X, Zhang H, Li W et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 2007; 129: 1275–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grussel S, Sipos B et al. Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 2007; 67: 8344–8350.

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Liu R, Li W, Chen C, Katoh H, Chen GY et al. Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer Cell 2009; 16: 336–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin F, Ladoire S, Mignot G, Apetoh L, Ghiringhelli F . Human FOXP3 and cancer. Oncogene 2010; 29: 4121–4129.

    Article  CAS  PubMed  Google Scholar 

  30. Roncador G, Garcia JF, Maestre L, Lucas E, Menarguez J, Ohshima K et al. FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia 2005; 19: 2247–2253.

    Article  CAS  PubMed  Google Scholar 

  31. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol 2010; 28: 2529–2537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hori S, Nomura T, Sakaguchi S . Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  33. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007; 445: 931–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lecuyer E, Herblot S, Saint-Denis M, Martin R, Begley CG, Porcher C et al. The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. Blood 2002; 100: 2430–2440.

    Article  CAS  PubMed  Google Scholar 

  35. Hansson A, Manetopoulos C, Jonsson JI, Axelson H . The basic helix-loop-helix transcription factor TAL1/SCL inhibits the expression of the p16INK4A and pTalpha genes. Biochem Biophys Res Commun 2003; 312: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  36. Tremblay M, Herblot S, Lecuyer E, Hoang T . Regulation of pT alpha gene expression by a dosage of E2A, HEB, and SCL. J Biol Chem 2003; 278: 12680–12687.

    Article  CAS  PubMed  Google Scholar 

  37. Xu Z, Huang S, Chang LS, Agulnick AD, Brandt SJ . Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol Cell Biol 2003; 23: 7585–7599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu R, Wang L, Chen G, Katoh H, Chen C, Liu Y et al. FOXP3 up-regulates p21 expression by site-specific inhibition of histone deacetylase 2/histone deacetylase 4 association to the locus. Cancer Res 2009; 69: 2252–2259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McMurchy AN, Gillies J, Gizzi MC, Riba M, Garcia-Manteiga JM, Cittaro D et al. A novel function for FOXP3 in humans: intrinsic regulation of conventional T cells. Blood 2013; 121: 1265–1275.

    Article  CAS  PubMed  Google Scholar 

  40. Rudra D, deRoos P, Chaudhry A, Niec RE, Arvey A, Samstein RM et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 2012; 13: 1010–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fleskens V, van Boxtel R, Forkhead Box P . Family members at the crossroad between tolerance and immunity: a balancing act. Int Rev Immunol 2013; 33: 94–109.

    Article  PubMed  Google Scholar 

  42. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006; 126: 375–387.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008; 453: 236–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van Loosdregt J, Fleskens V, Tiemessen MM, Mokry M, van Boxtel R, Meerding J et al. Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity 2013; 39: 298–310.

    Article  CAS  PubMed  Google Scholar 

  45. Shi X, Bowlin KM, Garry DJ . Fhl2 interacts with Foxk1 and corepresses Foxo4 activity in myogenic progenitors. Stem Cells 2010; 28: 462–469.

    CAS  PubMed  Google Scholar 

  46. Yang Y, Hou H, Haller EM, Nicosia SV, Bai W . Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J 2005; 24: 1021–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Loosdregt J, Fleskens V, Fu J, Brenkman AB, Bekker CP, Pals CE et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 2013; 39: 259–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Josefowicz SZ, Lu LF, Rudensky AY . Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012; 30: 531–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Samon JB, Champhekar A, Minter LM, Telfer JC, Miele L, Fauq A et al. Notch1 and TGFbeta1 cooperatively regulate Foxp3 expression and the maintenance of peripheral regulatory T cells. Blood 2008; 112: 1813–1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo X, Tan H, Zhou Y, Xiao T, Wang C, Li Y . Notch1 signaling is involved in regulating Foxp3 expression in T-ALL. Cancer Cell Int 2013; 13: 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Matsubara Y, Hori T, Morita R, Sakaguchi S, Uchiyama T . Phenotypic and functional relationship between adult T-cell leukemia cells and regulatory T cells. Leukemia 2005; 19: 482–483.

    Article  CAS  PubMed  Google Scholar 

  52. Kalender Atak Z, Gianfelici V, Hulselmans G, De Keersmaecker K, Devasia AG, Geerdens E et al. Comprehensive analysis of transcriptome variation uncovers known and novel driver events in T-cell acute lymphoblastic leukemia. PLoS Genet 2013; 9: e1003997.

    Article  PubMed Central  Google Scholar 

  53. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Barata JT, Boussiotis VA, Yunes JA, Ferrando AA, Moreau LA, Veiga JP et al. IL-7-dependent human leukemia T-cell line as a valuable tool for drug discovery in T-ALL. Blood 2004; 103: 1891–1900.

    Article  CAS  PubMed  Google Scholar 

  55. Aarts-Riemens T, Emmelot ME, Verdonck LF, Mutis T . Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells. Eur J Immunol 2008; 38: 1381–1390.

    Article  CAS  PubMed  Google Scholar 

  56. Huang, da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

  57. Huang, da W, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1–13.

    Article  Google Scholar 

  58. van Loosdregt J, Brunen D, Fleskens V, Pals CE, Lam EW, Coffer PJ . Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS One 2011; 6: e19047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S Sakaguchi and T Mutis for providing us with plasmids and T Radstake for providing us with cells. VF and JvL were supported by a grant from the Dutch Arthritis Foundation (Rheumafonds), and BAC was supported by a fellowship from Fundação para a Ciência e a Tecnologia. This work was supported by grant from the Dutch Arthritis Foundation (Rheumafonds), and a fellowship from Fundação para a Ciência e a Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Coffer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleskens, V., Mokry, M., van der Leun, A. et al. FOXP3 can modulate TAL1 transcriptional activity through interaction with LMO2. Oncogene 35, 4141–4148 (2016). https://doi.org/10.1038/onc.2015.481

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.481

This article is cited by

Search

Quick links