Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNA released by leukemic cells contributes to the disruption of the bone marrow microenvironment

Abstract

Reciprocal interactions between a tumor and its microenvironment control expansion of tumor cells. Here we show a specific type of interaction in which blasts of experimental leukemia destroy the bone marrow (BM) structures and kill stromal cells. The in vitro experiments showed that the cytotoxic agent released by leukemic cells is the fragmented DNA derived from their genome and occurring in nucleosome-like complexes. This DNA entered nuclei of BM or other cells and induced H2A.X phosphorylation at serine 139, similar to double-strand break-inducing agents. There was a correlation between large amounts of acquired DNA and death of recipient cells. Moreover, the DNA integrated into chromosomal DNA of recipient cells. Primary human acute myeloid leukemia cells also released fragmented DNA that penetrated the nuclei of other cells both in vitro and in vivo. We suggest that DNA fragments released from leukemic and also perhaps other types of tumor cells can activate DNA repair mechanisms or death in recipient cells of a tumor microenvironment, depending on the amount of the acquired DNA. This can impair DNA stability and viability of tumor stromal cells, undermine homeostatic capacity of tumor microenvironment and facilitate tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  2. Basso K, Dalla-Favera R . BCL6: master regulator of the germinal center reaction and key oncogene in B cell lymphomagenesis. Adv Immunol 2010; 105: 193–210.

    Article  CAS  PubMed  Google Scholar 

  3. Pereg Y, Liu BY, O’Rourke KM, Sagolla M, Dey A, Komuves L et al. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. Nat Cell Biol 2010; 12: 400–406.

    Article  CAS  PubMed  Google Scholar 

  4. Pickering MT, Kowalik TF . Rb inactivation leads to E2F1-mediated DNA double-strand break accumulation. Oncogene 2006; 25: 746–755.

    Article  CAS  PubMed  Google Scholar 

  5. Shimura T, Kakuda S, Ochiai Y, Nakagawa H, Kuwahara Y, Takai Y et al. Acquired radioresistance of human tumor cells by DNA-PK/AKT/GSK3beta-mediated cyclin D1 overexpression. Oncogene 2010; 29: 4826–4837.

    Article  CAS  PubMed  Google Scholar 

  6. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002; 9: 1031–1044.

    Article  CAS  PubMed  Google Scholar 

  7. Vichalkovski A, Gresko E, Hess D, Restuccia DF, Hemmings BA . PKB/AKT phosphorylation of the transcription factor Twist-1 at Ser42 inhibits p53 activity in response to DNA damage. Oncogene 2010; 29: 3554–3565.

    Article  CAS  PubMed  Google Scholar 

  8. Halazonetis TD, Gorgoulis VG, Bartek J . An oncogene-induced DNA damage model for cancer development. Science 2008; 319: 1352–1355.

    Article  CAS  PubMed  Google Scholar 

  9. Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest 2003; 112: 1751–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cramer K, Nieborowska-Skorska M, Koptyra M, Slupianek A, Penserga ET, Eaves CJ et al. BCR/ABL and other kinases from chronic myeloproliferative disorders stimulate single-strand annealing, an unfaithful DNA double-strand break repair. Cancer Res 2008; 68: 6884–6888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sallmyr A, Fan J, Rassool FV . Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 2008; 270: 1–9.

    Article  CAS  PubMed  Google Scholar 

  12. Estey E, Dohner H . Acute myeloid leukaemia. Lancet 2006; 368: 1894–1907.

    Article  PubMed  Google Scholar 

  13. Zuber J, Rappaport AR, Luo W, Wang E, Chen C, Vaseva AV et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev 2011; 25: 1628–1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eckert EA, Beard D, Beard JW . Dose-response relations in experimental transmission of avian erythromyeloblastic leukosis. I. Host-response to the virus. J Natl Cancer Inst 1951; 12: 447–463.

    CAS  PubMed  Google Scholar 

  15. Karafiat V, Dvorakova M, Pajer P, Kralova J, Horejsi Z, Cermak V et al. The leucine zipper region of Myb oncoprotein regulates the commitment of hematopoietic progenitors. Blood 2001; 98: 3668–3676.

    Article  CAS  PubMed  Google Scholar 

  16. Graf T . Myb: a transcriptional activator linking proliferation and differentiation in hematopoietic cells. Curr Opin Genet Dev 1992; 2: 249–255.

    Article  CAS  PubMed  Google Scholar 

  17. Introna M, Luchetti M, Castellano M, Arsura M, Golay J . The myb oncogene family of transcription factors: potent regulators of hematopoietic cell proliferation and differentiation. Semin Cancer Biol 1994; 5: 113–124.

    CAS  PubMed  Google Scholar 

  18. Lipsick JS, Wang DM . Transformation by v-Myb. Oncogene 1999; 18: 3047–3055.

    Article  CAS  PubMed  Google Scholar 

  19. Ness SA . The Myb oncoprotein: regulating a regulator. Biochim Biophys Acta 1996; 1288: F123–F139.

    CAS  PubMed  Google Scholar 

  20. Dvorakova M, Kralova J, Karafiat V, Bartunek P, Dvorak M . An ex vivo model to study v-Myb-induced leukemogenicity. Blood Cells Mol Dis 2001; 27: 437–445.

    Article  CAS  PubMed  Google Scholar 

  21. Peters DL, Pretorius PJ . Origin, translocation and destination of extracellular occurring DNA—a new paradigm in genetic behaviour. Clin Chim Acta 2011; 412: 806–811.

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A . H2AX: the histone guardian of the genome. DNA Repair (Amst) 2004; 3: 959–967.

    Article  CAS  Google Scholar 

  23. Savic V, Sanborn KB, Orange JS, Bassing CH . Chipping away at gamma-H2AX foci. Cell Cycle 2009; 8: 3285–3290.

    Article  CAS  PubMed  Google Scholar 

  24. MacCallum DE, Hupp TR, Midgley CA, Stuart D, Campbell SJ, Harper A et al. The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 1996; 13: 2575–2587.

    CAS  PubMed  Google Scholar 

  25. Burger-Kentischer A, Abele IS, Finkelmeier D, Wiesmuller KH, Rupp S . A new cell-based innate immune receptor assay for the examination of receptor activity, ligand specificity, signalling pathways and the detection of pyrogens. J Immunol Methods 2010; 358: 93–103.

    Article  CAS  PubMed  Google Scholar 

  26. Thiriet C, Hayes JJ . Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. Mol Cell 2005; 18: 617–622.

    Article  CAS  PubMed  Google Scholar 

  27. Michalet X, Ekong R, Fougerousse F, Rousseaux S, Schurra C, Hornigold N et al. Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 1997; 277: 1518–1523.

    Article  CAS  PubMed  Google Scholar 

  28. Fleischhacker M, Schmidt B . Free circulating nucleic acids in plasma and serum (CNAPS)—Useful for the detection of lung cancer patients? Cancer Biomark 2010; 6: 211–219.

    Article  PubMed  Google Scholar 

  29. Gahan PB, Stroun M . The virtosome-a novel cytosolic informative entity and intercellular messenger. Cell Biochem Funct 2010; 28: 529–538.

    Article  CAS  PubMed  Google Scholar 

  30. Mani RS, Chinnaiyan AM . Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences. Nat Rev Genet 2010; 11: 819–829.

    Article  CAS  PubMed  Google Scholar 

  31. Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH . A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res 2003; 63: 1727–1730.

    CAS  PubMed  Google Scholar 

  32. Hlozanek I, Sovova V . Application of COFAL and FA tests in the preparation of a leukosis-free poultry flock (In Czech). VetMed (Praha) 1968; 13: 561–568.

    Google Scholar 

  33. Bartunek P, Karafiat V, Dvorakova M, Zahorova V, Mandikova S, Zenke M et al. The Myb leucine zipper is essential for leukemogenicity of the v-Myb protein. Oncogene 1997; 15: 2939–2949.

    Article  CAS  PubMed  Google Scholar 

  34. Jarkovska K, Martinkova J, Liskova L, Halada P, Moos J, Rezabek K et al. Proteome mining of human follicular fluid reveals a crucial role of complement cascade and key biological pathways in women undergoing in vitro fertilization. J Proteome Res 2010; 9: 1289–1301.

    Article  CAS  PubMed  Google Scholar 

  35. Jin C, Felsenfeld G . Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 2007; 21: 1519–1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Karafiat V, Dvorakova M, Krejci E, Kralova J, Pajer P, Snajdr P et al. Transcription factor c-Myb is involved in the regulation of the epithelial-mesenchymal transition in the avian neural crest. Cell Mol Life Sci 2005; 62: 2516–2525.

    Article  CAS  PubMed  Google Scholar 

  37. Labit H, Goldar A, Guilbaud G, Douarche C, Hyrien O, Marheineke K . A simple and optimized method of producing silanized surfaces for FISH and replication mapping on combed DNA fibers. BioTechniques 2008; 45: 649–652, 654, 656–658.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Milos Grim and Drs Vladimir Pecenka, Vladimir Cermak and Jan Kosla for critical comments on manuscript. We are indebted to Drs Petr Novak, Vladimir Havlicek and Petr Pompach for identification of proteins by mass spectrometry, to Drs A Ekefjärd and D Enetoft from Ludesi for providing Viper software, and to Dr David W Hardekopf for his help in manuscript preparation. This work was supported by Grants AV0Z50520514 and KAN200520801 from the Academy of Sciences of the Czech Republic and LC06061 from the Ministry of Education, Youth and Sports and 204/06/1728 and 301/09/1727 from the Grant Agency of the Czech Republic to MD and from the Internal Grant Agency of the Ministry of Health of the Czech Republic, Grant no. NR 9651-4 to SP. We are also indebted to Tomáš Hlavnička, Roman Minárik, Miroslav Navrátil, Leoš Navrátil, Vladimír Pečenka, Karel Rybáček, Miroslav Sobotka, Josef Soukal and Petr Streitberg for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Dvořák.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvořáková, M., Karafiát, V., Pajer, P. et al. DNA released by leukemic cells contributes to the disruption of the bone marrow microenvironment. Oncogene 32, 5201–5209 (2013). https://doi.org/10.1038/onc.2012.553

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.553

Keywords

This article is cited by

Search

Quick links