Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Combining epitope-distinct antibodies to HER2: cooperative inhibitory effects on invasive growth

Abstract

Monoclonal antibodies (mAbs) to HER2 are currently used to treat breast cancer, but low clinical efficacy, along with primary and acquired resistance to therapy, commonly limit clinical applications. We previously reported that combinations of antibodies directed at non-overlapping epitopes of HER2 are endowed with enhanced antitumor effects, probably due to accelerated receptor degradation. Here, we extend these observations to three-dimensional mammary cell models, and compare the effects of single mAbs with the effects of antibody combinations. Collectively, our in vitro assays and computational image analyses indicate that combining mAbs against different epitopes of HER2 better inhibits invasive growth. Importantly, while growth factors are able to reduce intraluminal apoptosis and induce an invasive phenotype, combinations of mAbs better than single mAbs can reverse the growth factor-induced phenotypes of HER2-overexpressing spheroids. In conclusion, our studies propose that mAb combinations negate the biological effects of growth factors on invasive growth of HER2-overexpressing cells. Hence, combining mAbs offers a therapeutic strategy, potentially able to enhance clinical efficacy of existing antireceptor immunotherapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI et al. (2002). Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP et al. (2006). Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 8: 1235–1245.

    Article  CAS  PubMed  Google Scholar 

  • Baselga J . (2006). Targeting tyrosine kinases in cancer: the second wave. Science 312: 1175–1178.

    Article  CAS  PubMed  Google Scholar 

  • Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J et al. (2009). Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol 27: 2630–2637.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Kasus T, Schechter B, Lavi S, Yarden Y, Sela M . (2009). Persistent elimination of ErbB-2/HER2-overexpressing tumors using combinations of monoclonal antibodies: relevance of receptor endocytosis. Proc Natl Acad Sci USA 106: 3294–3299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Kasus T, Schechter B, Sela M, Yarden Y . (2007). Cancer therapeutic antibodies come of age: targeting minimal residual disease. Mol Oncol 1: 42–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citri A, Yarden Y . (2006). EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7: 505–516.

    Article  CAS  PubMed  Google Scholar 

  • Clynes RA, Towers TL, Presta LG, Ravetch JV . (2000). Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6: 443–446.

    Article  CAS  PubMed  Google Scholar 

  • Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS . (2002). The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111: 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Drebin JA, Link VC, Greene MI . (1988). Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded p185 molecule exert synergistic anti-tumor effects in vivo. Oncogene 2: 273–277.

    CAS  PubMed  Google Scholar 

  • Friedman LM, Rinon A, Schechter B, Lyass L, Lavi S, Bacus SS et al. (2005). Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci USA 102: 1915–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G et al. (2006). Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 126: 489–502.

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Shi D, Tu SM, Zhang HZ, Hung MC, Ling D . (1992). Oral cancer progression and c-erbB-2/neu proto-oncogene expression. Cancer Lett 65: 215–220.

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D et al. (2008). Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13: 394–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes NE, MacDonald G . (2009). ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21: 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Kasprzyk PG, Song SU, Di Fiore PP, King CR . (1992). Therapy of an animal model of human gastric cancer using a combination of anti-erbB-2 monoclonal antibodies. Cancer Res 52: 2771–2776.

    CAS  PubMed  Google Scholar 

  • Klapper LN, Vaisman N, Hurwitz E, Pinkas-Kramarski R, Yarden Y, Sela M . (1997). A subclass of tumor-inhibitory monoclonal antibodies to ErbB-2/HER2 blocks crosstalk with growth factor receptors. Oncogene 14: 2099–2109.

    Article  CAS  PubMed  Google Scholar 

  • Lemieux J, Clemons M, Provencher L, Dent S, Latreille J, Mackey J et al. (2009). The role of neoadjuvant her2-targeted therapies in her2-overexpressing breast cancers. Curr Oncol 16: 48–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS . (2001). ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3: 785–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahta R, Esteva FJ . (2006). Herceptin: mechanisms of action and resistance. Cancer Lett 232: 123–138.

    Article  CAS  PubMed  Google Scholar 

  • Nahta R, Hung MC, Esteva FJ . (2004). The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 64: 2343–2346.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen MW, Jacobsen HJ, Koefoed K, Hey A, Pyke C, Haurum JS et al. (2010). Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 70: 588–597.

    Article  CAS  PubMed  Google Scholar 

  • Pickl M, Ries CH . (2009). Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 28: 461–468.

    Article  CAS  PubMed  Google Scholar 

  • Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA et al. (2007). Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13: 4909–4919.

    Article  CAS  PubMed  Google Scholar 

  • Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M . (2009). Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res 69: 9330–9336.

    Article  CAS  PubMed  Google Scholar 

  • Schneider PM, Hung MC, Chiocca SM, Manning J, Zhao XY, Fang K et al. (1989). Differential expression of the c-erbB-2 gene in human small cell and non-small cell lung cancer. Cancer Res 49: 4968–4971.

    CAS  PubMed  Google Scholar 

  • Seton-Rogers SE, Brugge JS . (2004). ErbB2 and TGF-beta: a cooperative role in mammary tumor progression? Cell Cycle 3: 597–600.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Spangler JB, Neil JR, Abramovitch S, Yarden Y, White FM, Lauffenburger DA et al. (2010). Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci USA 107: 13252–13257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiridon CI, Ghetie MA, Uhr J, Marches R, Li JL, Shen GL et al. (2002). Targeting multiple Her-2 epitopes with monoclonal antibodies results in improved antigrowth activity of a human breast cancer cell line in vitro and in vivo. Clin Cancer Res 8: 1720–1730.

    CAS  PubMed  Google Scholar 

  • Ueda Y, Wang S, Dumont N, Yi JY, Koh Y, Arteaga CL . (2004). Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. J Biol Chem 279: 24505–24513.

    Article  CAS  PubMed  Google Scholar 

  • Weiner DB, Nordberg J, Robinson R, Nowell PC, Gazdar A, Greene MI et al. (1990). Expression of the neu gene-encoded protein (P185neu) in human non-small cell carcinomas of the lung. Cancer Res 50: 421–425.

    CAS  PubMed  Google Scholar 

  • Xia W, Lau YK, Zhang HZ, Liu AR, Li L, Kiyokawa N et al. (1997). Strong correlation between c-erbB-2 overexpression and overall survival of patients with oral squamous cell carcinoma. Clin Cancer Res 3: 3–9.

    CAS  PubMed  Google Scholar 

  • Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW et al. (2002). Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21: 6255–6263.

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Yip YL, Smith G, Koch J, Dubel S, Ward RL . (2001). Identification of epitope regions recognized by tumor inhibitory and stimulatory anti-ErbB-2 monoclonal antibodies: implications for vaccine design. J Immunol 166: 5271–5278.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Tsuda T, Matsumura T, Tsujino T, Hattori T, Ito H et al. (1989). Amplification of epidermal growth factor receptor (EGFR) gene and oncogenes in human gastric carcinomas. Virchows Arch B 57: 285–290.

    Article  CAS  PubMed  Google Scholar 

  • Zhan L, Xiang B, Muthuswamy SK . (2006). Controlled activation of ErbB1/ErbB2 heterodimers promote invasion of three-dimensional organized epithelia in an ErbB1-dependent manner: implications for progression of ErbB2-overexpressing tumors. Cancer Res 66: 5201–5208.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of our group for insightful comments. AE is supported by a post-doctoral fellowship of the Minerva Foundation. YY is the incumbent of the Harold and Zelda Goldenberg Professorial Chair, and MS is the incumbent of the W Garfield Weston Professorial Chair in Immunolgy. Our work is supported by a collaborative program between Centre Leon-Berard, Canceropole Lyon Auvegne Rhône-Alpes and the Weizmann Institute, as well as by grants from the National Cancer Institute (CA072981), the European Commission, the German–Israeli Project Cooperation (DIP/DFG), the Israel Cancer Research Fund, the Dr Miriam and Sheldon G Adelson Medical Research Foundation, the Kekst Family Institute for Medical Genetics, the Kirk Center for Childhood Cancer and Immunological Disorders, the Women's Health Research Center funded by Bennett–Pritzker Endowment Fund, the Marvelle Koffler Program for Breast Cancer Research, the Estate of John M, Lang and the MD Moross Institute for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Yarden.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emde, A., Pradeep, CR., Ferraro, D. et al. Combining epitope-distinct antibodies to HER2: cooperative inhibitory effects on invasive growth. Oncogene 30, 1631–1642 (2011). https://doi.org/10.1038/onc.2010.547

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.547

Keywords

Search

Quick links