Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TGF-β-mediated activation of RhoA signalling is required for efficient V12HaRas and V600EBRAF transformation

Abstract

Transforming growth factor β-1 (TGF-β) acts as both a tumour suppressor and a tumour promoter in a context-dependent manner. The tumour-promoting activities of TGF-β are likely to result from a combination of Smad and non-Smad signalling pathways but remain poorly understood. Here we show that TGF-β-mediated activation of RhoA is dependent on the kinase activity of ALK5 and that continuous ALK5 activity maintains basal RhoA–ROCK signalling, cell morphology and actin dynamics in serum-starved rodent fibroblasts independently of Smad2, Smad3 and Smad4. In immortalized human diploid fibroblasts, we show that oncogenic rewiring by transduction of V12HaRas instigates regulation of RhoA–ROCK signalling through an autocrine TGF-β1–ALK5 pathway. Furthermore, we show that ALK5-mediated activation of RhoA is required for efficient V12HaRas, V-Raf and V600EBRAF transformation and V12HaRas-mediated anchorage-independent growth. These findings identify a new pro-oncogenic activity of TGF-β and indicate that tumours harbouring V12HaRas and V600EBRAF mutations may be susceptible to TGF-β signalling inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bhowmick NA, Ghiassi M, Aakre M, Brown K, Singh V, Moses HL . (2003). TGF-beta-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc Natl Acad Sci USA 100: 15548–15553.

    Article  CAS  Google Scholar 

  • Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME et al. (2001). Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12: 27–36.

    Article  CAS  Google Scholar 

  • Bruna A, Darken RS, Rojo F, Ocana A, Penuelas S, Arias A et al. (2007). High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11: 147–160.

    Article  CAS  Google Scholar 

  • Chen D, Zhao M, Mundy GR . (2004). Bone morphogenetic proteins. Growth Factors 22: 233–241.

    Article  CAS  Google Scholar 

  • Chen S, Crawford M, Day RM, Briones VR, Leader JE, Jose PA et al. (2006). RhoA modulates Smad signaling during transforming growth factor-beta-induced smooth muscle differentiation. J Biol Chem 281: 1765–1770.

    Article  CAS  Google Scholar 

  • Crook T, Marston NJ, Sara EA, Vousden KH . (1994). Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell 79: 817–827.

    Article  CAS  Google Scholar 

  • Derynck R, Zhang YE . (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577–584.

    Article  CAS  Google Scholar 

  • Edlund S, Landstrom M, Heldin CH, Aspenstrom P . (2002). Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13: 902–914.

    Article  CAS  Google Scholar 

  • Goulimari P, Kitzing TM, Knieling H, Brandt DT, Offermanns S, Grosse R . (2005). Galpha12/13 is essential for directed cell migration and localized Rho-Dia1 function. J Biol Chem 280: 42242–42251.

    Article  CAS  Google Scholar 

  • Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD et al. (2002). SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62: 65–74.

    Article  CAS  Google Scholar 

  • Jaffe AB, Hall A . (2005). Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247–269.

    Article  CAS  Google Scholar 

  • Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR et al. (2005). Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 102: 13909–13914.

    Article  CAS  Google Scholar 

  • Larsson J, Goumans MJ, Sjostrand LJ, van Rooijen MA, Ward D, Leveen P et al. (2001). Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO J 20: 1663–1673.

    Article  CAS  Google Scholar 

  • Massague J, Seoane J, Wotton D . (2005). Smad transcription factors. Genes Dev 19: 2783–2810.

    Article  CAS  Google Scholar 

  • Moustakas A, Heldin CH . (2005). Non-Smad TGF-beta signals. J Cell Sci 118: 3573–3584.

    Article  CAS  Google Scholar 

  • Olson MF, Paterson HF, Marshall CJ . (1998). Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 394: 295–299.

    Article  CAS  Google Scholar 

  • Ozanne BW, Spence HJ, McGarry LC, Hennigan RF . (2006). Invasion is a genetic program regulated by transcription factors. Curr Opin Genet Dev 16: 65–70.

    Article  CAS  Google Scholar 

  • Pardali K, Moustakas A . (2007). Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775: 21–62.

    CAS  PubMed  Google Scholar 

  • Qiu RG, Chen J, McCormick F, Symons M . (1995). A role for Rho in Ras transformation. Proc Natl Acad Sci USA 92: 11781–11785.

    Article  CAS  Google Scholar 

  • Roberts AB, Wakefield LM . (2003). The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100: 8621–8623.

    Article  CAS  Google Scholar 

  • Sahai E, Alberts AS, Treisman R . (1998). RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J 17: 1350–1361.

    Article  CAS  Google Scholar 

  • Sahai E, Ishizaki T, Narumiya S, Treisman R . (1999). Transformation mediated by RhoA requires activity of ROCK kinases. Curr Biol 9: 136–145.

    Article  CAS  Google Scholar 

  • Sahai E, Marshall CJ . (2002). RHO-GTPases and cancer. Nat Rev Cancer 2: 133–142.

    Article  Google Scholar 

  • Sahai E, Olson MF, Marshall CJ . (2001). Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. Embo J 20: 755–766.

    Article  CAS  Google Scholar 

  • Shen X, Li J, Hu PP, Waddell D, Zhang J, Wang XF . (2001). The activity of guanine exchange factor NET1 is essential for transforming growth factor-beta-mediated stress fiber formation. J Biol Chem 276: 15362–15368.

    Article  CAS  Google Scholar 

  • Shi Y, Massague J . (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  Google Scholar 

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T et al. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389: 990–994.

    Article  CAS  Google Scholar 

  • Vardouli L, Moustakas A, Stournaras C . (2005). LIM-kinase 2 and cofilin phosphorylation mediate actin cytoskeleton reorganization induced by transforming growth factor-beta. J Biol Chem 280: 11448–11457.

    Article  CAS  Google Scholar 

  • Wakefield LM, Roberts AB . (2002). TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12: 22–29.

    Article  CAS  Google Scholar 

  • Zheng Y, Olson MF, Hall A, Cerione RA, Toksoz D . (1995). Direct involvement of the small GTP-binding protein Rho in lbc oncogene function. J Biol Chem 270: 9031–9034.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P ten-Dijke, R Treisman, C Hill, T Crook, X-F Wang, R Derynck, A Hall and M Olson for valuable reagents. We thank J Wyke and M Olson for critically reading the paper and for discussions during the course of this work. This work was supported by an Association for International Cancer Research fellowship to GJI (GJI, YMF, GJF and LCS) and Cancer Research UK (YMF, GJI, GJF, LCS, and BWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G J Inman.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, Y., Ferguson, G., Spender, L. et al. TGF-β-mediated activation of RhoA signalling is required for efficient V12HaRas and V600EBRAF transformation. Oncogene 28, 983–993 (2009). https://doi.org/10.1038/onc.2008.449

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.449

Keywords

This article is cited by

Search

Quick links