Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution

Abstract

Group II introns are self-splicing ribozymes that are essential in many organisms, and they have been hypothesized to share a common evolutionary ancestor with the spliceosome. Although structural similarity of RNA components supports this connection, it is of interest to determine whether associated protein factors also share an evolutionary heritage. Here we present the crystal structures of reverse transcriptase (RT) domains from two group II intron–encoded proteins (maturases) from Roseburia intestinalis and Eubacterium rectale, obtained at 1.2-Å and 2.1-Å resolution, respectively. These domains are more similar in architecture to the spliceosomal Prp8 RT-like domain than to any other RTs, and they share substantial similarity with flaviviral RNA polymerases. The RT domain itself is sufficient for binding intron RNA with high affinity and specificity, and it is contained within an active RT enzyme. These studies provide a foundation for understanding structure–function relationships within group II intron–maturase complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure and active site of the R.i. RT domain.
Figure 2: Comparison of the group II intron maturase RT domain with related structures.
Figure 3: The E.r. RT domain binds RNA with high affinity and specificity.
Figure 4: Dimerization interface of the R.i. RT domain.
Figure 5: E.r. RT forms a dimer in solution in the absence or presence of D4A RNA.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Pyle, A.M. The tertiary structure of group II introns: implications for biological function and evolution. Crit. Rev. Biochem. Mol. Biol. 45, 215–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lambowitz, A.M. & Belfort, M. Mobile bacterial group II introns at the crux of eukaryotic evolution. Microbiol. Spectr. 3, MDNA3-0050-2014 (2015).

  3. Lambowitz, A.M. & Zimmerly, S. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb. Perspect. Biol. 3, a003616 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lambowitz, A.M. & Zimmerly, S. Mobile group II introns. Annu. Rev. Genet. 38, 1–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Michel, F. & Ferat, J.L. Structure and activities of group II introns. Annu. Rev. Biochem. 64, 435–461 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Pyle, A.M. & Lambowitz, A.M. Group II Introns: ribozymes that splice RNA and invade DNA. in The RNA World 3rd edn. (ed. Gesteland, R.F.) 469–505 (Cold Spring Harbor Laboratory Press, 2006).

  7. Aizawa, Y., Xiang, Q., Lambowitz, A.M. & Pyle, A.M. The pathway for DNA recognition and RNA integration by a group II intron retrotransposon. Mol. Cell 11, 795–805 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Cousineau, B., Lawrence, S., Smith, D. & Belfort, M. Retrotransposition of a bacterial group II intron. Nature 404, 1018–1021 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Mohr, G., Perlman, P.S. & Lambowitz, A.M. Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res. 21, 4991–4997 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blocker, F.J. et al. Domain structure and three-dimensional model of a group II intron-encoded reverse transcriptase. RNA 11, 14–28 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zimmerly, S., Hausner, G. & Wu, Xc. Phylogenetic relationships among group II intron ORFs. Nucleic Acids Res. 29, 1238–1250 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Candales, M.A. et al. Database for bacterial group II introns. Nucleic Acids Res. 40, D187–D190 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Matsuura, M. et al. A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev. 11, 2910–2924 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wank, H., SanFilippo, J., Singh, R.N., Matsuura, M. & Lambowitz, A.M. A reverse transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. Mol. Cell 4, 239–250 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Rambo, R.P. & Doudna, J.A. Assembly of an active group II intron-maturase complex by protein dimerization. Biochemistry 43, 6486–6497 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Saldanha, R. et al. RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. Biochemistry 38, 9069–9083 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Gu, S.Q. et al. Genetic identification of potential RNA-binding regions in a group II intron-encoded reverse transcriptase. RNA 16, 732–747 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Watanabe, K. & Lambowitz, A.M. High-affinity binding site for a group II intron-encoded reverse transcriptase/maturase within a stem-loop structure in the intron RNA. RNA 10, 1433–1443 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsuura, M., Noah, J.W. & Lambowitz, A.M. Mechanism of maturase-promoted group II intron splicing. EMBO J. 20, 7259–7270 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cech, T.R. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44, 207–210 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Zimmerly, S., Guo, H., Perlman, P.S. & Lambowitz, A.M. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82, 545–554 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Sharp, P.A. On the origin of RNA splicing and introns. Cell 42, 397–400 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Xiong, Y. & Eickbush, T.H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353–3362 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zimmerly, S. & Semper, C. Evolution of group II introns. Mob. DNA 6, 7 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Madhani, H.D. & Guthrie, C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71, 803–817 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Fica, S.M., Mefford, M.A., Piccirilli, J.A. & Staley, J.P. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nat. Struct. Mol. Biol. 21, 464–471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robart, A.R., Chan, R.T., Peters, J.K., Rajashankar, K.R. & Toor, N. Crystal structure of a eukaryotic group II intron lariat. Nature 514, 193–197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toor, N., Keating, K.S., Taylor, S.D. & Pyle, A.M. Crystal structure of a self-spliced group II intron. Science 320, 77–82 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marcia, M. & Pyle, A.M. Visualizing group II intron catalysis through the stages of splicing. Cell 151, 497–507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shukla, G.C. & Padgett, R.A. A catalytically active group II intron domain 5 can function in the U12-dependent spliceosome. Mol. Cell 9, 1145–1150 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Fica, S.M. et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503, 229–234 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galej, W.P., Oubridge, C., Newman, A.J. & Nagai, K. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 493, 638–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dlakić, M. & Mushegian, A. Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase. RNA 17, 799–808 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nguyen, T.H. et al. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature 523, 47–52 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan, C. et al. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 349, 1182–1191 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Belancio, V.P., Hedges, D.J. & Deininger, P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 18, 343–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Rodić, N. et al. Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nat. Med. 21, 1060–1064 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lambowitz, A.M. & Perlman, P.S. Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends Biochem. Sci. 15, 440–444 (1990).

    Article  PubMed  Google Scholar 

  39. Mohr, S. et al. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA 19, 958–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gillis, A.J., Schuller, A.P. & Skordalakes, E. Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455, 633–637 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Ding, J. et al. Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. J. Mol. Biol. 284, 1095–1111 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Lesburg, C.A. et al. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat. Struct. Biol. 6, 937–943 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Holm, L. & Rosenström, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jamburuthugoda, V.K. & Eickbush, T.H. Identification of RNA binding motifs in the R2 retrotransposon-encoded reverse transcriptase. Nucleic Acids Res. 42, 8405–8415 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Brookes, E., Demeler, B., Rosano, C. & Rocco, M. The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule. Eur. Biophys. J. 39, 423–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Dai, L. et al. A three-dimensional model of a group II intron RNA and its interaction with the intron-encoded reverse transcriptase. Mol. Cell 30, 472–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mitchell, M., Gillis, A., Futahashi, M., Fujiwara, H. & Skordalakes, E. Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat. Struct. Mol. Biol. 17, 513–518 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Doublié, S. & Zahn, K.E. Structural insights into eukaryotic DNA replication. Front. Microbiol. 5, 444 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Doublié, S., Sawaya, M.R. & Ellenberger, T. An open and closed case for all polymerases. Structure 7, R31–R35 (1999).

    Article  PubMed  Google Scholar 

  52. Keating, K.S., Toor, N., Perlman, P.S. & Pyle, A.M. A structural analysis of the group II intron active site and implications for the spliceosome. RNA 16, 1–9 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yean, S.L., Wuenschell, G., Termini, J. & Lin, R.J. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408, 881–884 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sigel, R.K. et al. Solution structure of domain 5 of a group II intron ribozyme reveals a new RNA motif. Nat. Struct. Mol. Biol. 11, 187–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Toor, N., Hausner, G. & Zimmerly, S. Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7, 1142–1152 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Beck, C.R., Garcia-Perez, J.L., Badge, R.M. & Moran, J.V. LINE-1 elements in structural variation and disease. Annu. Rev. Genomics Hum. Genet. 12, 187–215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lohmann, V., Körner, F., Herian, U. & Bartenschlager, R. Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J. Virol. 71, 8416–8428 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kew, Y., Olsen, L.R., Japour, A.J. & Prasad, V.R. Insertions into the beta3-beta4 hairpin loop of HIV-1 reverse transcriptase reveal a role for fingers subdomain in processive polymerization. J. Biol. Chem. 273, 7529–7537 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sheldrick, G.M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 479–485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Terwilliger, T.C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65, 582–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Afonine, P.V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Chillon, I. et al. Native purification and analysis of long RNAs. Methods Enzymol. 558, 3–37 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fitzgerald, M.E., Vela, A. & Pyle, A.M. Dicer-related helicase 3 forms an obligate dimer for recognizing 22G-RNA. Nucleic Acids Res. 42, 3919–3930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Daugherty, M.A. & Fried, M.G. Protein-DNA interactions studied at sedimentation equilibrium. in Analytical Ultracentrifugation: Techniques and Methods (eds. Scott, D., Harding, S.E. & Rowe, A.) 195–209 (The Royal Society of Chemistry, 2005).

  69. Folta-Stogniew, E. & Williams, K.R. Determination of molecular masses of proteins in solution: implementation of an HPLC size exclusion chromatography and laser light scattering service in a core laboratory. J. Biomol. Tech. 10, 51–63 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge E. Folta-Stogniew at the Biophysics Resource of the Keck Facility at Yale University for performing the SEC-MALS experiments. Additionally, we thank F. Liu for kindly providing the plasmid, radiolabeled primer and ladders for the primer extension assay; J.A. Liberman and S. Somarowthu for helpful discussions; and T.H. Dickey for reading the manuscript. The SEC-LS/UV/RI instrumentation is supported by NIH award no. 1S10RR023748-01. This work was supported by National Institutes of Health (NIH) grant RO1GM50313 (A.M.P.) and the Howard Hughes Medical Institute (A.M.P.). C.Z. is supported by a Yale University Fellowship and a Gruber Science Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and A.M.P. designed the project. C.Z. performed the experiments and solved the structure. C.Z. and A.M.P. wrote the manuscript.

Corresponding author

Correspondence to Anna Marie Pyle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Domain construction, sequence, overall structure and active site of R.i. and E.r. maturases.

a. Organization of the maturase RT construct. All maturases contain an N-terminal RT domain (blue) and a C-terminal thumb/X domain (orange). b. Sequence alignment of the full-length maturase, comparing E.r. (Eu.re.I2) and R.i. (Ro.in.I1). The black boxes indicate identical residues, the grey boxes indicate similar residues, and the white box indicates residues with substantial differences. The red bar indicates the boundary for the RT domain used for crystallization. The blue arrow indicates the N-terminal RT domain and the orange arrow indicates the C-terminal X or thumb domain. c. R.i. and E.r. RT domain structures in cartoon representation. The R.i. RT is shown in green and the E.r. RT is shown in gray. d. Comparison of the E.r. RT active site and primer grip with an active telomerase (PDBID: 3KYL)49. The E.r. RT is shown in grey and telomerase is shown in cyan. For the residues shown as sticks, red color indicates oxygen and blue color indicates nitrogen atoms. The potassium in the R.i. RT active site is shown in purple, and the Mg2+ in the telomerase active site is shown in yellow. Metal ion coordination is indicated by orange dashed lines.

Supplementary Figure 2 Maturase RT forms a dimer.

a. Each panel shows the content of an ASU in different crystals, and the organism names and the space groups are indicated at the bottom of each panel. In the dimer, one monomer is colored in grey and the other is colored in green. The ASU of R.i. RT crystallized in P21 space group from condition A (see online Methods) contains 2 molecules. The ASU of R.i. RT crystallized in P212121 space group from condition B (see online methods) contains 4 molecules. The ASU of R.i. RT crystallized in P1 space group from condition C (see online methods) contains 4 molecules. The ASU of E.r. RT crystallized in P21 space group from condition D (see online methods) contains 8 molecules. b. The active site within the R.i. RT domain is partially obstructed by the dimerization interface. On the left panel, monomer A is represented as a cartoon diagram in grey, and monomer B is represented as a space-filling model in green. For monomer A, the active site loop is colored in red, the primer grip is colored in magenta and the insertion loop containing a short α-helix a10 is colored in yellow. The right panel is a close-up view of the interactions that stabilize the insertion loop shown in sticks. Oxygen atoms are colored in red, nitrogen atoms are colored in blue and hydrogen bonds are shown as orange dashed lines.

Supplementary Figure 3 A possible model for association of the maturase dimer with a group II intron RNA.

A cartoon diagram of oceanobacillus iheyensis group II intron (PDBID: 4FAQ)29 is shown on the left, where domain 1 (D1) is colored yellow and domain 4 (D4) is colored in cyan. All other domains are grey. The electrostatic surface of the E.r. RT dimer is shown at right, where blue indicates positive charge and red indicates negative charge. The sizes of the group II intron model and the maturase RT dimer model are not to scale. Based on the electrostatic surface potentials of the RT dimer, and previous results showing that maturase interacts with the intron as a dimer15-16 through a high-affinity binding site in intron D414 and additional auxiliary sites in D148, the potential surfaces involved in RNA-protein interactions are marked by arcs, and the potential interactions are indicated by dashed lines.

Supplementary Figure 4 E.r. RT binds RNA with high affinity and specificity.

a. Comparison of the secondary structures for D4 in the L1.LtrB14 and E.r. introns. The residues colored in red belong to the D4A region. The start codon is highlighted in green. The rest of the open reading frame (ORF) encoding the maturase is indicated by a circle. b. Electrophoretic mobility shift assay (EMSA) for E.r. RT binding to D4A or D2 (Fig. 3b and Fig. 3c). The protein concentrations (nM) for each lane are indicated at the top. c. Phosphate binding site on the R.i. RT domain. The R.i. RT is shown as a surface rendering in grey. The phosphorus atom is orange and the oxygens are red. The simulated annealing omit map for the phosphate ion is shown in blue at the 3σ level. The interactions stabilizing the phosphate are shown on the right panel. Carbon atoms are grey, oxygens are red and nitrogen are blue. Hydrogen bonds are shown as orange dashed lines. d. Molecular weight analysis of E.r. D4A RNA using SEC-MALS. The experiments for E.r. D4A RNA (shades of grey) were performed over two concentrations (in mg/mL) as indicated, and the MW at each concentration was plotted as triangles and circles respectively (upper right legend) on the right y-axis. For each concentration, the UV trace (curve) was plotted on the left y-axis with the elution volume indicated on the x-axis. The MW at elution peak is 23 kDa at 0.03 mg/mL and 24 kDa at 0.07 mg/mL.

Supplementary Figure 5 Primer extension assay for the maturase.

Lanes 1-3 are DNA sequencing ladders (corresponding to nucleotides A, G and T respectively) showing the sequence and the resolution of the primer extension products on the gel. Lane 4 is the control lane, which only contains the primer. Lane 5 is the primer extension product from the E.r. RT construct, and lane 6 is the primer extension product from the E.r. full-length maturase. In order to resolve DNA products of vastly different length on the same gel (enabling us to compare nonprocessive and processive activity by the RT domain and full-length maturase constructs, respectively), we used a long sequencing gel. The gel is slightly twisted, so each corresponding lane is also labeled at the bottom of the gel to avoid confusion.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 1766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Pyle, A. Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat Struct Mol Biol 23, 558–565 (2016). https://doi.org/10.1038/nsmb.3224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing