Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Swimming against the tide: progress and challenges in our understanding of colicin translocation

Abstract

Colicins are folded protein toxins that face the formidable task of translocating across one or both of the Escherichia coli cell membranes in order to induce cell death. This translocation is achieved by parasitizing host proteins. There has been much recent progress in our understanding of the early stages of colicin entry, including the binding of outer-membrane nutrient transporters and porins and the subsequent recruitment of periplasmic and inner-membrane proteins that, together, trigger translocation. As well as providing insights into how these toxins enter cells, these studies have highlighted some surprising similarities in the modes of action of the systems that colicins subvert.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The translocation paths of colicins into Escherichia coli.
Figure 2: Colicin recruitment of outer-membrane translocator proteins.
Figure 3: Similarities in order–disorder signalling of the Ton and Tol systems and its subversion by translocating colicins.

Similar content being viewed by others

References

  1. Riley, M. A. & Wertz, J. E. Bacteriocins: evolution, ecology and application. Annu. Rev. Microbiol. 56, 117–137 (2002).

    Article  CAS  Google Scholar 

  2. Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature 418, 171–174 (2002).

    Article  CAS  Google Scholar 

  3. Kirkup, B. C. & Riley, M. A. Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo. Nature 428, 412 (2004).

    Article  CAS  Google Scholar 

  4. Majeed, H., Gillor, O., Kerr, B. & Riley, M. A. Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J. 22 Jul 2010 (doi:10.1038/ismej.2010.90).

    Article  PubMed Central  Google Scholar 

  5. Gillor, O., Etzion, A. & Riley, M. A. The dual role of bacteriocins as anti- and probiotics. Appl. Microbiol. Biotechnol. 81, 591–606 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  6. Gordon, D. M. The potential of bacteriocin-producing probiotics and associated caveats. Future Microbiol. 4, 941–943 (2008).

    Article  Google Scholar 

  7. Schamberger, G. P., Phillips, R. L., Jacobs, J. L. & Diez-Gonzalez, F. Reduction of Escherichia coli O157:H7 populations in cattle by addition of colicin E7-producing E. coli to feed. Appl. Environ. Microbiol. 70, 6053–6060 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  8. Gratia, A. Sur un remarquable exemple d'antagonisme entre deux souches de colibacille. C. R. Soc. Biol. 93, 1040–1041 (1925) (in French).

    Google Scholar 

  9. Cascales, E. et al. Colicin biology. Microbiol. Mol. Biol. Rev. 71, 158–229 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  10. Wiener, M., Freymann, D., Ghosh, P. & Stroud, R. M. Crystal structure of colicin Ia. Nature 385, 461–464 (1997).

    Article  CAS  Google Scholar 

  11. Soelaiman, S., Jakes, K., Wu, N., Li, C. & Shoham, M. Crystal structure of colicin E3: implications for cell entry and ribosome inactivation. Mol. Cell 8, 1053–1062 (2001).

    Article  CAS  Google Scholar 

  12. Hilsenbeck, J. L. et al. Crystal structure of the cytotoxic bacterial protein colicin B at 2.5 Å resolution. Mol. Microbiol. 51, 711–720 (2004).

    Article  CAS  Google Scholar 

  13. Vetter, I. R. et al. Crystal structure of a colicin N-fragment suggests a model for toxicity. Structure 6, 863–874 (1998).

    Article  CAS  Google Scholar 

  14. Zeth, K., Romer, C., Patzer, S. I. & Braun, V. Crystal structure of colicin M, a novel phosphatase specifically imported by Escherichia coli. J. Biol. Chem. 283, 25324–25331 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  15. Arnold, T., Zeth, K. & Linke, D. Structure and function of colicin S4, a colicin with a duplicated receptor-binding domain. J. Biol. Chem. 284, 6403–6413 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  16. Anderluh, G., Gokce, I. & Lakey, J. H. A natively unfolded toxin domain uses its receptor as a folding template. J. Biol. Chem. 279, 22002–22009 (2004).

    Article  CAS  Google Scholar 

  17. Collins, E. S. et al. Structural dynamics of the membrane translocation domain of colicin E9 and its interaction with TolB. J. Mol. Biol. 318, 787–804 (2002).

    Article  CAS  Google Scholar 

  18. Schaller, K. & Nomura, M. Colicin E2 is DNA endonuclease. Proc. Natl Acad. Sci. USA 73, 3989–3993 (1976).

    Article  CAS  Google Scholar 

  19. Jakes, K. S. & Zinder, N. D. Highly purified colicin E3 contains immunity protein. Proc. Natl Acad. Sci. USA 71, 3380–3384 (1974).

    Article  CAS  Google Scholar 

  20. Olschläger, T., Turba, A. & Braun, V. Binding of the immunity protein inactivates colicin M. Mol. Microbiol. 5, 1105–1111 (1991).

    Article  Google Scholar 

  21. Kleanthous, C. & Walker, D. Immunity proteins: enzyme inhibitors that avoid the active site. Trends Biochem. Sci. 26, 624–631 (2001).

    Article  CAS  Google Scholar 

  22. Gillor, O., Vriezen, J. A. & Riley, M. A. The role of SOS boxes in enteric bacteriocin regulation. Microbiology 154, 1783–1792 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  23. Di Masi, D. R., White, J. C., Schnaitman, C. A. & Bradbeer, C. Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J. Bacteriol. 115, 506–513 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kurisu, G. et al. The structure of BtuB with bound colicin E3 R-domain implies a translocon. Nature Struct. Biol. 10, 948–954 (2003).

    Article  CAS  Google Scholar 

  25. Sharma, O. et al. Structure of the complex of the colicin E2 R-domain and its BtuB receptor. The membrane colicin translocon. J. Biol. Chem. 282, 23163–23170 (2007).

    Article  CAS  Google Scholar 

  26. Buchanan, S. K. et al. Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import. EMBO J. 26, 2594–2604 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  27. Housden, N. G., Loftus, S. R., Moore, G. R., James, R. & Kleanthous, C. Cell entry mechanism of enzymatic bacterial colicins: porin recruitment and the thermodynamics of receptor binding. Proc. Natl Acad. Sci. USA 102, 13849–13854 (2005).

    Article  CAS  Google Scholar 

  28. Jakes, K. & Finkelstein, A. The colicin Ia receptor, Cir, is also the translocator for colicin Ia. Mol. Microbiol. 75, 567–578 (2009).

    Article  PubMed Central  Google Scholar 

  29. Zakharov, S. D., Sharma, O., Zhalnina, M. V. & Cramer, W. A. Primary events in the colicin translocon: FRET analysis of colicin unfolding initiated by binding to BtuB and OmpF. Biochemistry 47, 12802–12809 (2008).

    Article  CAS  Google Scholar 

  30. Zakharov, S. D. et al. Colicin occlusion of OmpF and TolC channels: outer membrane translocons for colicin import. Biophys. J. 87, 3901–3911 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  31. Yamashita, E., Zhalnina, M. V., Zakharov, S. D., Sharma, O. & Cramer, W. A. Crystal structures of the OmpF porin: function in a colicin translocon. EMBO J. 27, 2171–2180 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  32. Baboolal, T. G. et al. Colicin N binds to the periphery of its receptor and translocator, outer membrane protein F. Structure 16, 371–379 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  33. Anderluh, G. et al. Concerted folding and binding of a flexible colicin domain to its periplasmic receptor TolA. J. Biol. Chem. 278, 21860–21868 (2003).

    Article  CAS  Google Scholar 

  34. Bonsor, D. A. et al. Allosteric β-propeller signalling in TolB and its manipulation by translocating colicins. EMBO J. 28, 2846–2857 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  35. Zhang, Y. et al. The crystal structure of the TolB box of Colicin A in complex with TolB reveals important differences in the recruitment of the common TolB translocation portal used by group A colicins. Mol. Microbiol. 75, 623–636 (2009).

    Article  PubMed Central  Google Scholar 

  36. Cadieux, N., Phan, P. G., Cafiso, D. S. & Kadner, R. J. Differential substrate-induced signaling through the TonB-dependent transporter BtuB. Proc. Natl Acad. Sci. USA 100, 10688–10693 (2003).

    Article  CAS  Google Scholar 

  37. Wiener, M. C. TonB-dependent outer membrane transport: going for Baroque? Curr. Opin. Struct. Biol. 15, 394–400 (2005).

    Article  CAS  Google Scholar 

  38. Kleanthous, C. Translocator hunt comes full Cir-Col. Mol. Microbiol. 75, 529–533 (2009).

    Article  Google Scholar 

  39. Pilsl, H. & Braun, V. The Ton system can functionally replace the TolB protein in the uptake of mutated colicin U. FEMS Microbiol. Lett. 164, 363–367 (1998).

    Article  CAS  Google Scholar 

  40. de Zamaroczy, M., Mora, L., Lecuyer, A., Geli, V. & Buckingham, R. H. Cleavage of colicin D is necessary for cell killing and requires the inner membrane peptidase LepB. Mol. Cell 8, 159–168 (2001).

    Article  CAS  Google Scholar 

  41. Shi, Z., Chak, K. F. & Yuan, H. S. Identification of an essential cleavage site in ColE7 required for import and killing of cells. J. Biol. Chem. 280, 24663–24668 (2005).

    Article  CAS  Google Scholar 

  42. Walker, D., Mosbahi, K., Vankemmelbeke, M., James, R. & Kleanthous, C. The role of electrostatics in colicin nuclease domain translocation into bacterial cells. J. Biol. Chem. 282, 31389–31397 (2007).

    Article  CAS  Google Scholar 

  43. Mosbahi, K. et al. The cytotoxic domain of colicin E9 is a channel-forming endonuclease. Nature Struct. Biol. 9, 476–484 (2002).

    Article  CAS  Google Scholar 

  44. Mosbahi, K., Walker, D., James, R., Moore, G. R. & Kleanthous, C. Global structural rearrangement of the cell penetrating ribonuclease colicin E3 on interaction with phospholipid membranes. Protein Sci. 15, 620–627 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  45. Benedetti, H., Lloubes, R., Lazdunski, C. & Letellier, L. Colicin A unfolds during its translocation in Escherichia coli cells and spans the whole cell envelope when its pore has formed. EMBO J. 11, 441–447 (1992).

    Article  CAS  PubMed Central  Google Scholar 

  46. Duche, D. Colicin E2 is still in contact with its receptor and import machinery when its nuclease domain enters the cytoplasm. J. Bacteriol. 189, 4217–4222 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  47. Cascales, E., Gavioli, M., Sturgis, J. N. & Lloubes, R. Proton motive force drives the interaction of the inner membrane TolA and outer membrane Pal proteins in Escherichia coli. Mol. Microbiol. 38, 904–915 (2000).

    Article  CAS  Google Scholar 

  48. Gerding, M. A., Ogata, Y., Pecora, N. D., Niki, H. & de Boer, P. A. The trans-envelope Tol–Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli. Mol. Microbiol. 63, 1008–1025 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  49. Bonsor, D. A., Grishkovskaya, I., Dodson, E. J. & Kleanthous, C. Molecular mimicry enables competitive recruitment by a natively disordered protein. J. Am. Chem. Soc. 15, 4800–4807 (2007).

    Article  Google Scholar 

  50. Loftus, S. R. et al. Competitive recruitment of the periplasmic translocation portal TolB by a natively disordered domain of colicin E9. Proc. Natl Acad. Sci. USA 103, 12353–12358 (2006).

    Article  CAS  Google Scholar 

  51. Vankemmelbeke, M. N. et al. Energy dependent immunity protein release during tol-dependent nuclease colicin translocation. J. Biol. Chem. 284, 18932–18941 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  52. Witty, M. et al. Structure of the periplasmic domain of Pseudomonas aeruginosa TolA: evidence for an evolutionary relationship with the TonB transporter protein. EMBO J. 21, 4207–4218 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  53. Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. TonB-dependent transporters: regulation, structure and function. Annu. Rev. Microbiol. 64, 43–60 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  54. Hecht, O., Ridley, H., Lakey, J. H. & Moore, G. R. A common interaction for the entry of colicin N and filamentous phage into Escherichia coli. J. Mol. Biol. 388, 880–893 (2009).

    Article  CAS  Google Scholar 

  55. Jakes, K. S., Davis, N. G. & Zinder, N. D. A hybrid toxin from bacteriophage f1 attachment protein and colicin E3 has altered cell receptor specificity. J. Bacteriol. 170, 4231–4238 (1988).

    Article  CAS  PubMed Central  Google Scholar 

  56. Braun, V. & Herrmann, C. Evolutionary relationship of uptake systems for biopolymers in Escherichia coli: cross-complementation between the TonB-ExbB-ExbD and the TolA-TolA-TolR proteins. Mol. Microbiol. 8, 261–268 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to N. Housden for help with figures 2 and 3, and to G. Thomas for helpful comments on the manuscript. My sincere thanks to all my colIaborators and to members of my laboratory, past and present, for their contributions to the colicin project. In particular, I thank R. James and G. Moore for introducing me to the world of colicin biology. I gratefully acknowledge funding for our work on colicins and Tol proteins from the Biotechnology and Biological Sciences Research Council of the UK and The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Colin Kleanthous's homepage

Bacteriocin repository

Genome bacteriocin search engine

Protein Data Bank

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleanthous, C. Swimming against the tide: progress and challenges in our understanding of colicin translocation. Nat Rev Microbiol 8, 843–848 (2010). https://doi.org/10.1038/nrmicro2454

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2454

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing