Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emergence of proteome-wide technologies: systematic analysis of proteins comes of age

Key Points

  • Emerging technologies over the past decade have enabled efforts in systems biology to expand to whole-proteome analysis.

  • New methods for tracking proteins and their dynamic behaviour include the ease of creation of genetically encoded fluorescent fusion proteins, robust antibody production, emergence of whole-proteome mass spectrometry and robotic infrastructures.

  • The various large-scale technologies enable the evolution from the analysis of single proteins to whole proteomes, from population-level analysis to single cell studies and from static to dynamic measurements.

  • As proteomic data accumulate, they highlight that an enormous proportion of cellular regulation is post-translational. Hence, adding proteomic data to current cellular models provides a better description of the inherent complexity in biological systems.

  • By integrating molecular cues and buffering the constant fluctuations of the cell, protein-level changes are used to reduce the necessity of inducing a costly transcriptional response.

  • Future challenges should focus on: first, adapting technologies to be user-friendly, and cost- and time-effective, which will make proteomics the new transcriptomics; second, creating more single-cell technologies; third, pushing forward technologies that allow both mRNA and protein tracking in parallel; fourth, the development of analysis pipelines that enable the integration of proteome level data with additional systematic layers of cellular information (that is, glycomics, lipidomics and metabolomics).

Abstract

During the lifetime of a cell proteins can change their localization, alter their abundance and undergo modifications, all of which cannot be assayed by tracking mRNAs alone. Methods to study proteomes directly are coming of age, thereby opening new perspectives on the role of post-translational regulation in stabilizing the cellular milieu. Proteomics has undergone a revolution, and novel technologies for the systematic analysis of proteins have emerged. These methods can expand our ability to acquire information from single proteins to proteomes, from static to dynamic measures and from the population level to the level of single cells. Such approaches promise that proteomes will soon be studied at a similar level of dynamic resolution as has been the norm for transcriptomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modes of post-transcriptional regulation to control the functional protein pool of the cell.

Similar content being viewed by others

References

  1. The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

  2. Valouev, A. et al. Determinants of nucleosome organization in primary human cells. Nature 474, 516–520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009). Provides the first example of ribosome profiling as a valid tool for mapping translation in yeast and leads the way for assaying additional organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Godoy, L. M. et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251–1254 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Newman, J. R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Soufi, B. et al. Global analysis of the yeast osmotic stress response by quantitative proteomics. Mol. Biosyst. 5, 1337–1346 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Zielinska, D. F., Gnad, F., Wisniewski, J. R. & Mann, M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141, 897–907 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Olsen, J. V. & Mann, M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol. Cell. Proteom. 12, 3444–3452 (2013).

    Article  CAS  Google Scholar 

  12. Phanstiel, D. H. et al. Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nature Methods 8, 821–827 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Newman, R. H. et al. Construction of human activity-based phosphorylation networks. Mol. Syst. Biol. 9, 655 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang, C., Wang, M., Zhou, Y., Dupree, J. L. & Han, X. Alterations in mouse brain lipidome after disruption of CST gene: a lipidomics study. Mol. Neurobiol. http://dx.doi.org/10.1007/s12035-013-8626-0 (2014).

  15. Cimino, J. et al. Towards lipidomics of low-abundant species for exploring tumor heterogeneity guided by high-resolution mass spectrometry imaging. Int. J. Mol. Sci. 14, 24560–24580 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhang, Q. & Wakelam, M. J. O. Lipidomics in the analysis of malignancy. Adv. Biol. Regul. 54, 93–98 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. Cooper, S. J. et al. High-throughput profiling of amino acids in strains of the Saccharomyces cerevisiae deletion collection. Genome Res. 20, 1288–1296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zenobi, R. Single-cell metabolomics: analytical and biological perspectives. Science 342, 1243259 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Rubakhin, S. S., Romanova, E. V., Nemes, P. & Sweedler, J. V. Profiling metabolites and peptides in single cells. Nature Methods 8, S20–29 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Hillenmeyer, M. E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tarassov, K. et al. An in vivo map of the yeast protein interactome. Science 320, 1465–1470 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Rev. Genet. 13, 227–232 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Causton, H. C. et al. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell. 12, 323–337 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tkach, J. M. et al. Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nature Cell Biol. 14, 966–976 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Breker, M., Gymrek, M. & Schuldiner, M. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J. Cell Biol. 200, 839–850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dénervaud, N. et al. A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc. Natl Acad. Sci. USA 110, 15842–15847 (2013). Uses, together with references 25 and 26, high-throughput microscopy and microchemostats for proteome-wide quantitative measurements at single-cell resolution for both protein abundance and subcellular localization. Provide the first system-level evidence for localization changes under stress.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jung, S. et al. Global analysis of condition-specific subcellular protein distribution and abundance. Mol. Cell. Proteom. 12, 1421–1435 (2013).

    Article  CAS  Google Scholar 

  29. Lee, M. V. et al. A dynamic model of proteome changes reveals new roles for transcript alteration in yeast. Mol. Syst. Biol. 7, 514 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Washburn, M. P. et al. Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 100, 3107–3112 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khan, Z. et al. Primate transcript and protein expression levels evolve under compensatory selection pressures. Science 342, 1100–1104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schrimpf, S. P. et al. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol. 7, e48 (2009).

    Article  PubMed  CAS  Google Scholar 

  33. Laurent, J. M. et al. Protein abundances are more conserved than mRNA abundances across diverse taxa. Proteomics 10, 4209–4212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vogel, C. Evolution. Protein expression under pressure. Science 342, 1052–1053 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Walther, T. C., Olsen, J. V. & Mann, M. Yeast expression proteomics by high-resolution mass spectrometry. Methods Enzym. 470, 259–280 (2010).

    Article  CAS  Google Scholar 

  36. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nature Biotech. 28, 1248–1250 (2010). Enables a systematic exploration of the human proteome using antibody-based proteomics, by combining high-throughput generation of affinity-purified antibodies with protein profiling in a multitude of tissues and cells assembled in tissue microarrays.

    Article  CAS  Google Scholar 

  38. Navani, S. The human protein atlas. J. Obstet. Gynecol. India. 61, 27–31 (2011).

    Article  Google Scholar 

  39. Stadler, C. et al. RNA- and antibody-based profiling of the human proteome with focus on chromosome 19. J. Proteome Res. 13, 2019–2027 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Edfors, F. et al. Immuno-proteomics using polyclonal antibodies and stable isotope labeled affinity-purified recombinant proteins. Mol. Cell. Proteom. http://dx.doi.org/10.1074/mcp.M113.034140 (2014).

  41. Mann, M., Kulak, N. a, Nagaraj, N. & Cox, J. The coming age of complete, accurate, and ubiquitous proteomes. Mol. Cell. 49, 583–590 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Altelaar, A. F. M., Munoz, J. & Heck, A. J. R. Next-generation proteomics: towards an integrative view of proteome dynamics. Nature Rev. Genet. 14, 35–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Bensimon, A., Heck, A. J. R. & Aebersold, R. Mass spectrometry-based proteomics and network biology. Annu. Rev. Biochem. 81, 379–405 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Walzthoeni, T., Leitner, A., Stengel, F. & Aebersold, R. Mass spectrometry supported determination of protein complex structure. Curr. Opin. Struct. Biol. 23, 252–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Meissner, F., Scheltema, R. a, Mollenkopf, H.-J. & Mann, M. Direct proteomic quantification of the secretome of activated immune cells. Science 340, 475–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Sabidó, E., Selevsek, N. & Aebersold, R. Mass spectrometry-based proteomics for systems biology. Curr. Opin. Biotechnol. 23, 591–597 (2012).

    Article  PubMed  CAS  Google Scholar 

  47. Picotti, P. et al. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494, 266–270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maier, T. et al. Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol. Syst. Biol. 7, 511 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Beck, M. et al. The quantitative proteome of a human cell line. Mol. Syst. Biol. 7, 549 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Geiger, T. et al. Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Mol. Cell. Proteom. 12, 1709–1722 (2013).

    Article  CAS  Google Scholar 

  51. Low, T. Y. et al. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis. Cell Rep. 5, 1469–1478 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Nagaraj, N. et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 7, 548 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schmidt, A. et al. Absolute quantification of microbial proteomes at different states by directed mass spectrometry. Mol. Syst. Biol. 7, 510 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Nagaraj, N. et al. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top orbitrap. Mol. Cell. Proteomics 11, M111.013722 (2012).

    Article  PubMed  CAS  Google Scholar 

  55. Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wis´niewski, J. R. et al. Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma. Mol. Syst. Biol. 8, 611 (2012).

    Article  CAS  Google Scholar 

  57. Hebert, A. S. et al. The one hour yeast proteome. Mol. Cell. Proteom. 13, 339–347 (2013).

    Article  CAS  Google Scholar 

  58. Baerenfaller, K. et al. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320, 938–941 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Branca, R. M. M. et al. HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nature Methods 11, 59–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Passarelli, M. K. & Ewing, A. G. Single-cell imaging mass spectrometry. Curr. Opin. Chem. Biol. 17, 854–859 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Ibáñez, A. J. et al. Mass spectrometry-based metabolomics of single yeast cells. Proc. Natl Acad. Sci. USA 110, 8790–8794 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gefen, O. & Balaban, N. Q. The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol. Rev. 33, 704–717 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Balázsi, G., van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: from microbes to mammals. Cell 144, 910–925 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Rubakhin, S. S., Lanni, E. J. & Sweedler, J. V. Progress toward single cell metabolomics. Curr. Opin. Biotechnol. 24, 95–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Tanner, S. D., Baranov, V. I., Ornatsky, O. I., Bandura, D. R. & George, T. C. An introduction to mass cytometry: fundamentals and applications. Cancer Immunol. Immunother. 62, 955–965 (2013).

    Article  PubMed  Google Scholar 

  66. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nature Biotech. 30, 858–867 (2012).

    Article  CAS  Google Scholar 

  68. Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nature Genet. 38, 636–643 (2006). Characterizes, together with reference 7, the noise profile of 43 yeast proteins during 11 environmental conditions and shows the first evidence for stress-related noisy proteins versus house-keeping proteins with low noise.

    Article  CAS  PubMed  Google Scholar 

  69. Handfield, L.-F., Chong, Y. T., Simmons, J., Andrews, B. J. & Moses, A. M. Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins. PLoS Comput. Biol. 9, e1003085 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rimon, N. & Schuldiner, M. Getting the whole picture: combining throughput with content in microscopy. J. Cell Sci. 124, 3743–3751 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Sigal, A. et al. Generation of a fluorescently labeled endogenous protein library in living human cells. Nature Protoc. 2, 1515–1527 (2007).

    Article  CAS  Google Scholar 

  72. Frenkel-Morgenstern, M. et al. Dynamic Proteomics: a database for dynamics and localizations of endogenous fluorescently-tagged proteins in living human cells. Nucleic Acids Res. 38, D508–D512 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Sigal, A. et al. Dynamic proteomics in individual human cells uncovers widespread cell-cycle dependence of nuclear proteins. Nature Methods 3, 525–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Geva-Zatorsky, N. et al. Protein dynamics in drug combinations: a linear superposition of individual-drug responses. Cell 140, 643–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Hu, P. et al. Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol. 7, e96 (2009).

    Article  PubMed  CAS  Google Scholar 

  76. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010). Profiles protein and mRNA expression levels at single-molecule sensitivity and at single-cell resolution. Also demonstrates the surprising lack of correlation between protein and mRNA levels in the same cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Maerkl, S. J. Next generation microfluidic platforms for high-throughput protein biochemistry. Curr. Opin. Biotechnol. 22, 59–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Milo, R. What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 35, 1050–1055 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Simpson, C. E. & Ashe, M. P. Adaptation to stress in yeast: to translate or not? Biochem. Soc. Trans. 40, 794–799 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Besse, F. & Ephrussi, A. Translational control of localized mRNAs: restricting protein synthesis in space and time. Nature Rev. Mol. Cell Biol. 9, 971–980 (2008).

    Article  CAS  Google Scholar 

  82. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kuersten, S., Radek, A., Vogel, C. & Penalva, L. O. F. Translation regulation gets its “omics” moment. Wiley Interdiscip. Rev. RNA 4, 617–630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brar, G. A. et al. High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335, 552–557 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789–802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stern-Ginossar, N. et al. Decoding human cytomegalovirus. Science 338, 1088–1093 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Stumpf, C. R., Moreno, M. V., Olshen, A. B., Taylor, B. S. & Ruggero, D. The translational landscape of the mammalian cell cycle. Mol. Cell. 52, 574–582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gingold, H. & Pilpel, Y. Determinants of translation efficiency and accuracy. Mol. Syst. Biol. 7, 481 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ravid, T. & Hochstrasser, M. Diversity of degradation signals in the ubiquitin–proteasome system. Nature Rev. Mol. Cell. Biol. 9, 679–690 (2008).

    Article  CAS  Google Scholar 

  90. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O'Shea, E. K. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl Acad. Sci. USA 103, 13004–13009 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eden, E. et al. Proteome half-life dynamics in living human cells. Science. 331, 764–768 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Geva-Zatorsky, N. et al. Using bleach-chase to measure protein half-lives in living cells. Nature Protoc. 7, 801–811 (2012).

    Article  CAS  Google Scholar 

  93. Khmelinskii, A. et al. Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nature Biotech. 30, 708–714 (2012). Develops advanced tFTs, which elegantly overcome the methodological problems of measuring protein dynamics in vivo.

    Article  CAS  Google Scholar 

  94. Lippincott-Schwartz, J. & Patterson, G. H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 19, 555–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Claydon, A. J. & Beynon, R. Proteome dynamics: revisiting turnover with a global perspective. Mol. Cell. Proteom. 11, 1551–1565 (2012).

    Article  CAS  Google Scholar 

  96. Claydon, A. J., Thom, M. D., Hurst, J. L. & Beynon, R. J. Protein turnover: measurement of proteome dynamics by whole animal metabolic labelling with stable isotope labelled amino acids. Proteomics. 12, 1194–1206 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Doherty, M. K., Hammond, D. E., Clague, M. J., Gaskell, S. J. & Beynon, R. J. Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J. Proteome Res. 8, 104–112 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Hodas, J. J. L. et al. Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT). Proteomics 12, 2464–2476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schwanhäusser, B., Gossen, M., Dittmar, G. & Selbach, M. Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9, 205–209 (2009).

    Article  PubMed  CAS  Google Scholar 

  100. Bagert, J. D. et al. Quantitative, time-resolved proteomic analysis by combining bioorthogonal noncanonical amino acid tagging and pulsed stable isotope labeling by amino acids in cell culture. Mol. Cell. Proteom. 13, 1352–1358 (2014).

    Article  CAS  Google Scholar 

  101. Sobczyk, G. J., Wang, J. & Weijer, C. J. SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale. Nature Commun. 5, 3319 (2014).

    Article  CAS  Google Scholar 

  102. Jayapal, K. P. et al. Multitagging proteomic strategy to estimate protein turnover rates in dynamic systems. J. Proteome Res. 9, 2087–2097 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Howden, A. J. M. et al. QuaNCAT: quantitating proteome dynamics in primary cells. Nature Methods 10, 343–346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Merbl, Y., Refour, P., Patel, H., Springer, M. & Kirschner, M. W. Profiling of ubiquitin-like modifications reveals features of mitotic control. Cell 152, 1160–1172 (2013). Provides a new methodology for profiling post-translational modifications that is applicable to many cellular and environmental conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Roth, A. F. et al. Global analysis of protein palmitoylation in yeast. Cell 125, 1003–1013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wan, J., Roth, A. F., Bailey, A. O. & Davis, N. G. Palmitoylated proteins: purification and identification. Nature Protoc. 2, 1573–1584 (2007).

    Article  CAS  Google Scholar 

  107. Zhang, Y., Kweon, H. K., Shively, C., Kumar, A. & Andrews, P. C. Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data. PLoS Comput. Biol. 9, e1003077 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schmidt, A. et al. Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response. Mol. Cell. Proteomics 13, 537–550 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Robitaille, A. M. et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320–1323 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Rigbolt, K. T. G. et al. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci. Signal. 4, rs3 (2011).

    Article  PubMed  Google Scholar 

  111. Zoumaro-Djayoon, A. D. et al. Investigating the role of FGF-2 in stem cell maintenance by global phosphoproteomics profiling. Proteomics. 11, 3962–3971 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 127, 635–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell. 44, 325–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Merbl, Y. & Kirschner, M. W. Large-scale detection of ubiquitination substrates using cell extracts and protein microarrays. Proc. Natl Acad. Sci. USA 106, 2543–2548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Peters, L. Z., Hazan, R., Breker, M., Schuldiner, M. & Ben-Aroya, S. Formation and dissociation of proteasome storage granules are regulated by cytosolic pH. J. Cell Biol. 201, 663–671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ahmad, Y., Boisvert, F.-M., Lundberg, E., Uhlen, M. & Lamond, A. I. Systematic analysis of protein pools, isoforms, and modifications affecting turnover and subcellular localization. Mol. Cell. Proteomics 11, M111.013680 (2012).

    Article  PubMed  CAS  Google Scholar 

  117. Boisvert, F.-M. et al. A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol. Cell. Proteomics 11, M111.011429 (2012).

    Article  PubMed  CAS  Google Scholar 

  118. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Gisler, S. M. et al. Monitoring protein-protein interactions between the mammalian integral membrane transporters and PDZ-interacting partners using a modified split-ubiquitin membrane yeast two-hybrid system. Mol. Cell. Proteom. 7, 1362–1377 (2008).

    Article  CAS  Google Scholar 

  120. Miernyk, J. A. & Thelen, J. J. Biochemical approaches for discovering protein–protein interactions. Plant J. 53, 597–609 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Popescu, S. C. et al. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev. 23, 80–92 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Mika, S. & Rost, B. Protein–protein interactions more conserved within species than across species. PLoS Comput. Biol. 2, e79 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Rajagopala, S. V. et al. The binary protein–protein interaction landscape of Escherichia coli. Nature Biotech. 32, 285–290 (2014).

    Article  CAS  Google Scholar 

  125. Braun, P., Aubourg, S., Van Leene, J., De Jaeger, G. & Lurin, C. Plant protein interactomes. Annu. Rev. Plant Biol. 64, 161–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Walhout, A. J. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Goodman, S. R., Daescu, O., Kakhniashvili, D. G. & Zivanic, M. The proteomics and interactomics of human erythrocytes. Exp. Biol. Med. 238, 509–518 (2013).

    Article  CAS  Google Scholar 

  129. Rual, J.-F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Havugimana, P. C. et al. A census of human soluble protein complexes. Cell 150, 1068–1081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhang, S., Ma, C. & Chalfie, M. Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell. 119, 137–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Sung, M.-K. & Huh, W.-K. In vivo quantification of protein-protein interactions in Saccharomyces cerevisiae using bimolecular fluorescence complementation assay. J. Microbiol. Methods. 83, 194–201 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Johnsson, N. Analyzing protein–protein interactions in the post-interactomic era. Are we ready for the endgame? Biochem. Biophys. Res. Commun. 445, 739–745 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Rao, V. S., Srinivas, K., Sujini, G. N. & Kumar, G. N. S. Protein–protein interaction detection: methods and analysis. Int. J. Proteom. 2014, 147648 (2014).

    Article  CAS  Google Scholar 

  135. Ngounou Wetie, A. G. et al. Protein-protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches. Cell. Mol. Life Sci. 71, 205–228 (2013).

    Article  PubMed  CAS  Google Scholar 

  136. Vlasblom, J., Jin, K., Kassir, S. & Babu, M. Exploring mitochondrial system properties of neurodegenerative diseases through interactome mapping. J. Proteomics 100, 8–24 (2013).

    Article  PubMed  CAS  Google Scholar 

  137. Hagen, N., Bayer, K., Roesch, K. & Schindler, M. The intra viral protein interaction network of hepatitis C virus. Mol. Cell. Proteom. http://dx.doi.org/10.1074/mcp.M113.036301 (2014).

  138. Moya, I. M. & Halder, G. Discovering the Hippo pathway protein-protein interactome. Cell Res. 24, 137–138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Guney, E. & Oliva, B. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes. PLoS ONE 9, e94686 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Soler-López, M., Zanzoni, A., Lluís, R., Stelzl, U. & Aloy, P. Interactome mapping suggests new mechanistic details underlying Alzheimer's disease. Genome Res. 21, 364–376 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Cox, J. & Mann, M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem. 80, 273–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Woo, S. et al. Proteogenomic database construction driven from large scale RNA–seq data. J. Proteome Res. 13, 21–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Shi, Z., Wang, J. & Zhang, B. NetGestalt: integrating multidimensional omics data over biological networks. Nature Methods 10, 597–598 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Talwar, P. et al. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease. BMC Genomics 15, 199 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Borchers, C. H. et al. The Human Proteome Organization Chromosome 6 Consortium: integrating chromosome-centric and biology/disease driven strategies. J. Proteom. 100, 60–67 (2014).

    Article  CAS  Google Scholar 

  146. Chen, R. et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 148, 1293–1307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rubinstein, A. D. & Kimchi, A. Life in the balance — a mechanistic view of the crosstalk between autophagy and apoptosis. J. Cell Sci. 125, 5259–5268 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Zeng, L. et al. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141, 682–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wis´niewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nature Methods 6, 359–362 (2009).

    Article  CAS  Google Scholar 

  150. Gorini, G., Nunez, Y. O. & Mayfield, R. D. Integration of miRNA and protein profiling reveals coordinated neuroadaptations in the alcohol-dependent mouse brain. PLoS ONE 8, e82565 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratory is supported by a European Research Council (ERC) C Starting Grant (260395). M.S. is a European Molecular Biology Organization (EMBO) Young Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Schuldiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Tandem affinity purification epitope

(TAP epitope). An epitope, against which specific and high-affinity antibodies exist, that can be used for purification and western blot analysis.

Shotgun proteomics

Techniques for the parallel identification of all proteins in a sample using high-performance liquid chromatography followed by mass spectrometry.

Fluorescence in situ hybridization

(FISH). A technique for detecting nucleic acids (DNA or mRNA) inside a single cell by use of a complementary oligonucleotide probe that is detected by fluorescence microscopy.

Ribosome profiling

A strategy for sequencing ribosome-protected mRNA fragments to provide a genome-wide map of translated proteins.

Protein microarray

A method to study protein modifications or physical interactions. Proteins are immobilized on glass slides and exposed to probe molecules (usually fluorescently labelled). A reaction between the probe and the arrayed protein emits a signal that is detected by a laser scanner.

Protein-fragment complementation assays

Assays for measuring protein–protein interactions based on the premise that when two proteins interact they also bring into proximity any protein fragments attached to them, thus enabling the fragments to complement each other and to fold into an active reporter protein.

Two-hybrid screens

Types of protein-fragment complementation assay in which each half of a split Gal4 transcription factor (the DNA-binding domain or the activation domain) is fused to one of two proteins of interest (bait and prey). Physical proximity of the two proteins enables the reconstitution of the Gal4 transcription factor, thus leading to transcriptional activation.

Split-ubiquitin assays

Types of protein-fragment complementation assay in which each half of a ubiquitin enzyme is fused to one of two proteins of interest (bait and prey). One half of the ubiquitin is also fused to a transcription factor. Physical proximity enables the reconstitution of the split protein into a ubiquitin moiety that is recognized by endogenous ubiquitin-directed proteases, which cleave between the ubiquitin and the transcription factor. The cleaved transcription factor can relocate to the nucleus and activate a reporter gene.

Split-DHFR assays

Types of protein-fragment complementation assay in which each half of a split dihydrofolate reductase (DHFR) enzyme is fused to one of two proteins of interest (bait and prey). Physical proximity enables the reconstitution of the split protein into a functional DHFR enzyme, which makes it possible for cells to grow in the presence of an inhibitor of the endogenous and essential DHFR enzyme (such as methotrexate).

Split-YFP approaches

Types of protein-fragment complementation assay in which each half of a split fluorescent protein (YFP, GFP or cyan fluorescent protein) is fused to one of two proteins of interest (bait and prey). Physical proximity enables the reconstitution of the split protein into a functionally fluorescent product.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breker, M., Schuldiner, M. The emergence of proteome-wide technologies: systematic analysis of proteins comes of age. Nat Rev Mol Cell Biol 15, 453–464 (2014). https://doi.org/10.1038/nrm3821

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3821

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research