Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of APC

Abstract

Mutation of APC (adenomatous polyposis coli) is a common factor in most colorectal cancers. APC has many functions, the most prominent is its capacity to regulate β-catenin-mediated gene transcription in response to Wnt signalling. Loss of APC leads to deregulated β-catenin and this is intimately linked with tumour formation. However, recent evidence indicates that the interaction of APC with the cytoskeleton might also contribute to tumour initiation and progression. How does APC interact with the cytoskeleton and how could this play a part in colorectal tumorigenesis?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wnt signalling is mediated by APC and results in the activation of target genes that regulate differentiation and proliferation.
Figure 2: Cytoskeletal proteins in gut epithelium.
Figure 3: The APC molecule and sites of mutations found in tumours.
Figure 4: Possible contribution for cytoskeletal changes incurred by loss of APC to tumour formation and progression in the gut.

Similar content being viewed by others

References

  1. Moser, A. R., Dove, W. F., Roth, K. A. & Gordon, J. I. The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J. Cell Biol. 116, 1517–1526 (1992).

    CAS  PubMed  Google Scholar 

  2. Su, L. K. et al. Multiple intestinal neoplasia caused by mutations in the murine homolog of the APC gene. Science 256, 668–670 (1992).

    CAS  PubMed  Google Scholar 

  3. Fodde, R. The APC gene in colorectal cancer. Eur. J. Cancer 38, 867–871 (2002).

    CAS  PubMed  Google Scholar 

  4. Gregorieff, A. & Clevers, H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev. 19, 877–890 (2005).

    CAS  PubMed  Google Scholar 

  5. Pinto, D. & Clevers, H. Wnt control of stem cells and differentiation in the intestinal epithelium. Exp. Cell Res. 306, 357–363 (2005).

    CAS  PubMed  Google Scholar 

  6. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).

    CAS  PubMed  Google Scholar 

  7. Dikovskaya, D., Zumbrunn, J., Penman, G. A. & Näthke, I. S. The adenomatous polyposis coli protein: in the limelight out at the edge. Trends Cell Biol. 11, 378–384 (2001).

    CAS  PubMed  Google Scholar 

  8. Näthke, I. S. The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annu. Rev. Cell Dev. Biol. 20, 337–366 (2004).

    PubMed  Google Scholar 

  9. Samowitz, W. S. et al. β-Catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Res. 59, 1442–1444 (1999).

    CAS  PubMed  Google Scholar 

  10. Haigis, K. M. et al. Tumor regionality in the mouse intestine reflects the mechanism of loss of Apc function. Proc. Natl Acad. Sci. USA 101, 9769–9773 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Harada, N. et al. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of β-catenin. Cancer Res. 62, 1971–1977 (2002).

    CAS  PubMed  Google Scholar 

  12. Gounari, F. et al. Loss of adenomatous polyposis coli gene function disrupts thymic development. Nature Immunol. 6, 800–809 (2005).

    CAS  Google Scholar 

  13. Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am. J. Anat. 141, 537–561 (1974).

    CAS  PubMed  Google Scholar 

  14. Cheng, H. & Leblond, C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am. J. Anat. 141, 461–479 (1974).

    CAS  PubMed  Google Scholar 

  15. Stappenbeck, T. S., Wong, M. H., Samm, J. R., Mysorekar, I. U. & Gordon, J. I. Notes from some crypt watchers: regulation of renewal in the mouse intestinal epithelium. Curr. Opin. Cell Biol. 10, 702–709 (1998).

    CAS  PubMed  Google Scholar 

  16. Kaur, P. & Potten, C. S. Cell migration velocities in the crypts of the small intestine after cytotoxic insult are not dependent on mitotic activity. Cell. Tissue Kinet. 19, 601–610 (1986).

    CAS  PubMed  Google Scholar 

  17. Kaur, P. & Potten, C. S. Circadian variation in migration velocity in small intestinal epithelium. Cell. Tissue Kinet. 19, 591–599 (1986).

    CAS  PubMed  Google Scholar 

  18. Bullen, T. F. et al. Characterization of epithelial cell shedding from human small intestine. Lab. Invest. 86, 1052–1063 (2006).

    CAS  PubMed  Google Scholar 

  19. Kim, S. H., Roth, K. A., Moser, A. R. & Gordon, J. I. Transgenic mouse models that explore the multistep hypothesis of intestinal neoplasia. J. Cell Biol. 123, 877–893 (1993).

    CAS  PubMed  Google Scholar 

  20. Sansom, O. J. et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 18, 1385–1390 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Munemitsu, S. et al. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res. 54, 3676–3681 (1994).

    CAS  PubMed  Google Scholar 

  22. Su, L.-K. et al. APC binds to the novel protein EB1. Cancer Res. 55, 2972–2977 (1995).

    CAS  PubMed  Google Scholar 

  23. Tirnauer, J. S. & Bierer, B. E. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J. Cell Biol. 149, 761–766 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsumine, A. et al. Binding of APC to the human homologue of the Drosophila discs large tumor suppressor protein. Science 272, 1020–1023 (1996).

    CAS  PubMed  Google Scholar 

  25. Zumbrunn, J., Inoshita, K., Hyman, A. A. & Näthke, I. S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3b phosphorylation. Curr. Biol. 11, 44–49 (2001).

    CAS  PubMed  Google Scholar 

  26. Kita, K., Wittmann, T., Nä thke, I. S. & Waterman- Storer, C. M. APC on microtubule plus ends in cell extensions can promote microtubule net growth with or without EB1. Mol. Biol. Cell 17, 2331–2345 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Näthke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. & Nelson, W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J. Cell Biol. 134, 165–179 (1996).

    Article  PubMed  Google Scholar 

  28. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. Adenomatous polyposis coli (APC) protein moves along microtubules and concentrates at their growing ends in epithelial cells. J. Cell Biol. 148, 505–517 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Langford, K. J., Askham, J. M., Lee, T., Adams, M. & Morrison, E. E. Examination of actin and microtubule dependent APC localisations in living mammalian cells. BMC Cell Biol. 7, 3 (2006).

    PubMed  PubMed Central  Google Scholar 

  30. Reilein, A. & Nelson, W. J. APC is a component of an organizing template for cortical microtubule networks. Nature Cell Biol. 7, 463–473 (2005).

    CAS  PubMed  Google Scholar 

  31. Reilein, A., Yamada, S. & Nelson, W. J. Self-organization of an acentrosomal microtubule network at the basal cortex of polarized epithelial cells. J. Cell Biol. 171, 845–855 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosin-Arbesfeld, R., Ihrke, G. & Bienz, M. Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells. EMBO J. 20, 5929–5939 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Watanabe, T. et al. Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev. Cell 7, 871–883 (2004).

    CAS  PubMed  Google Scholar 

  34. Kawasaki, Y. et al. Asef, a link between the tumor suppressor APC and G-protein signaling. Science 289, 1194–1197 (2000).

    CAS  PubMed  Google Scholar 

  35. Kawasaki, Y., Sato, R. & Akiyama, T. Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nature Cell Biol. 5, 211–215 (2003).

    CAS  PubMed  Google Scholar 

  36. Jimbo, T. et al. Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nature Cell Biol. 4, 323–327 (2002).

    CAS  PubMed  Google Scholar 

  37. Li, Z. & Näthke, I. S. Tumor-associated NH2-terminal fragments are the most stable part of the adenomatous polyposis coli protein and can be regulated by interactions with COOH-terminal domains. Cancer Res. 65, 5195–5204 (2005).

    CAS  PubMed  Google Scholar 

  38. Funke, L., Dakoji, S. & Bredt, D. S. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu. Rev. Biochem. 74, 219–245 (2005).

    CAS  PubMed  Google Scholar 

  39. Zhou, F. Q., Zhou, J., Dedhar, S., Wu, Y. H. & Snider, W. D. NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC. Neuron 42, 897–912 (2004).

    CAS  PubMed  Google Scholar 

  40. Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003).

    CAS  PubMed  Google Scholar 

  41. Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature Cell Biol. 6, 820–830 (2004).

    CAS  PubMed  Google Scholar 

  42. Iizuka-Kogo, A., Shimomura, A. & Senda, T. Colocalization of APC and DLG at the tips of cellular protrusions in cultured epithelial cells and its dependency on cytoskeletons. Histochem. Cell Biol. 123, 67–73 (2005).

    CAS  PubMed  Google Scholar 

  43. Etienne-Manneville, S., Manneville, J. B., Nicholls, S., Ferenczi, M. A. & Hall, A. Cdc42 and Par6–PKCζ regulate the spatially localized association of Dlg1 and APC to control cell polarization. J. Cell Biol. 170, 895–901 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown, M. D. & Sacks, D. B. IQGAP1 in cellular signaling: bridging the GAP. Trends Cell Biol. 16, 242–249 (2006).

    CAS  PubMed  Google Scholar 

  45. Noritake, J., Watanabe, T., Sato, K., Wang, S. & Kaibuchi, K. IQGAP1: a key regulator of adhesion and migration. J. Cell Sci. 118, 2085–2092 (2005).

    CAS  PubMed  Google Scholar 

  46. Mahmoud, N. N. et al. Apc gene mutation is associated with a dominant-negative effect upon intestinal cell migration. Cancer Res. 57, 5045–5050 (1997).

    CAS  PubMed  Google Scholar 

  47. Wong, M. H., Hermiston, M. L., Syder, A. J. & Gordon, J. I. Forced expression of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell migration in the intestinal epithelium. Proc. Natl Acad. Sci. USA 93, 9588–9593 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Louie, R. K. et al. Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J. Cell Sci. 117, 1117–1128 (2004).

    CAS  PubMed  Google Scholar 

  49. Dikovskaya, D., Newton, I. P. & Näthke, I. S. The adenomatous polyposis coli protein is required for the formation of robust spindles formed in CSF Xenopus extracts. Mol. Biol. Cell 15, 2978–2991 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaplan, K. B. et al. A novel role for the APC tumour suppressor in chromosome segregation. Nature Cell Biol. 3, 429–432 (2001).

    CAS  PubMed  Google Scholar 

  51. Fodde, R. et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biol. 3, 433–438 (2001).

    CAS  PubMed  Google Scholar 

  52. Banks, J. D. & Heald, R. Adenomatous polyposis coli associates with the microtubule-destabilizing protein XMCAK. Curr. Biol. 14, 2033–2038 (2004).

    CAS  PubMed  Google Scholar 

  53. Green, R. A. & Kaplan, K. B. Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J. Cell Biol. 163, 949–961 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Green, R. A., Wollman, R. & Kaplan, K. B. APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol. Biol. Cell 16, 4609–4622 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tighe, A., Johnson, V. L. & Taylor, S. S. Truncating APC mutations have dominant effects on proliferation, spindle checkpoint control, survival and chromosome stability. J. Cell Sci. 117, 6339–6353 (2004).

    CAS  PubMed  Google Scholar 

  56. Tighe, A., Johnson, V. L., Albertella, M. & Taylor, S. S. Aneuploid colon cancer cells have a robust spindle checkpoint. EMBO Rep. 2, 609–614 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Draviam, V. M., Shapiro, I., Aldridge, B. & Sorger, P. K. Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. EMBO J. 25, 2814–2827 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shi, Q. & King, R. W. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437, 1038–1042 (2005).

    CAS  PubMed  Google Scholar 

  59. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    CAS  PubMed  Google Scholar 

  60. Yamashita, Y. M., Jones, D. L. & Fuller, M. T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301, 1547–1550 (2003).

    CAS  PubMed  Google Scholar 

  61. Potten, C. S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci. 115, 2381–2388 (2002).

    CAS  PubMed  Google Scholar 

  62. Armakolas, A. & Klar, A. J. Cell type regulates selective segregation of mouse chromosome 7 DNA strands in mitosis. Science 311, 1146–1149 (2006).

    CAS  PubMed  Google Scholar 

  63. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lane, J. D., Allan, V. J. & Woodman, P. G. Active relocation of chromatin and endoplasmic reticulum into blebs in late apoptotic cells. J. Cell Sci. 118, 4059–4071 (2005).

    CAS  PubMed  Google Scholar 

  65. Moss, D. K., Betin, V. M., Malesinski, S. D. & Lane, J. D. A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation. J. Cell Sci. 119, 2362–2374 (2006).

    CAS  PubMed  Google Scholar 

  66. Zhang, T. et al. Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res. 61, 8664–8667 (2001).

    CAS  PubMed  Google Scholar 

  67. Chen, T. et al. Regulation of caspase expression and apoptosis by adenomatous polyposis coli. Cancer Res. 63, 4368–4374 (2003).

    CAS  PubMed  Google Scholar 

  68. Zhu, P. et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5, 455–463 (2004).

    CAS  PubMed  Google Scholar 

  69. Chen, T. et al. Clusterin-mediated apoptosis is regulated by adenomatous polyposis coli and is p21 dependent but p53 independent. Cancer Res. 64, 7412–7419 (2004).

    CAS  PubMed  Google Scholar 

  70. Steigerwald, K., Behbehani, G. K., Combs, K. A., Barton, M. C. & Groden, J. The APC tumor suppressor promotes transcription-independent apoptosis in vitro. Mol. Cancer Res. 3, 78–89 (2005).

    CAS  PubMed  Google Scholar 

  71. Venesio, T. et al. Germline APC mutation on the β-catenin binding site is associated with a decreased apoptotic level in colorectal adenomas. Mod. Pathol. 16, 57–65 (2003).

    PubMed  Google Scholar 

  72. Bernal, N. P. et al. Evidence for active Wnt signaling during postresection intestinal adaptation. J. Pediatr. Surg. 40, 1025–1029 (2005).

    PubMed  Google Scholar 

  73. Hasegawa, S. et al. Apoptosis in neural crest cells by functional loss of APC tumor suppressor gene. Proc. Natl Acad. Sci. USA 99, 297–302 (2002).

    CAS  PubMed  Google Scholar 

  74. Rosenblatt, J., Raff, M. C. & Cramer, L. P. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr. Biol. 11, 1847–1857 (2001).

    CAS  PubMed  Google Scholar 

  75. Radtke, F. & Clevers, H. Self-renewal and cancer of the gut: two sides of a coin. Science 307, 1904–1909 (2005).

    CAS  PubMed  Google Scholar 

  76. Batlle, E. et al. β-Catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251–263 (2002).

    CAS  PubMed  Google Scholar 

  77. Penman, G. A., Leung, L. & Näthke, I. S. The adenomatous polyposis coli protein (APC) exists in two distinct soluble complexes with different functions. J. Cell Sci. 118, 4741–4750 (2005).

    CAS  PubMed  Google Scholar 

  78. Pollack, A. L., Barth, A. I. M., Altschuler, Y., Nelson, W. J. & Mostov, K. E. Dynamics of β-catenin interactions with APC protein regulate epithelial tubulogenesis. J. Cell Biol. 137, 1651–1662 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Krylova, O., Messenger, M. J. & Salinas, P. C. Dishevelled-1 regulates microtubule stability: a new function mediated by glycogen synthase kinase-3β. J. Cell Biol. 151, 83–94 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Krylova, O. et al. WNT-3, expressed by motoneurons, regulates terminal arborization of neurotrophin-3-responsive spinal sensory neurons. Neuron 35, 1043–1056 (2002).

    CAS  PubMed  Google Scholar 

  81. Ciani, L., Krylova, O., Smalley, M. J., Dale, T. C. & Salinas, P. C. A divergent canonical WNT-signaling pathway regulates microtubule dynamics: dishevelled signals locally to stabilize microtubules. J. Cell Biol. 164, 243–253 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Smits, R. et al. Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev. 13, 1309–1321 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gaspar, C. & Fodde, R. APC dosage effects in tumorigenesis and stem cell differentiation. Int. J. Dev. Biol. 48, 377–386 (2004).

    CAS  PubMed  Google Scholar 

  84. Lee, A. et al. Detection of tumor markers including carcinoembryonic antigen, APC, and cyclin D2 in fine-needle aspiration fluid of breast. Arch. Pathol. Lab. Med. 128, 1251–1256 (2004).

    CAS  PubMed  Google Scholar 

  85. Beroud, C. & Soussie, T. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res. 24, 121–124 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Fodde, R., Smits, R. & Clevers, H. APC, signal transduction and genetic instability in colorectal cancer. Nature Rev. Cancer 1, 55–67 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

I thank all members of my laboratory and A. Müller (University of Dundee) for their constructive comments on the manuscript, with particular thanks to P. Appleton (Näthke laboratory) for creating the images shown in Figure 2. I am grateful to O. Sansom (Beatson Institute) and K. Haigis (Massachusetts Institute of Technology) for helpful discussions. Work in my laboratory is funded by grants from Cancer Research UK, the Association for International Research, The Burroughs Wellcome Fund, and the Human Frontiers Science Programme.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

Colorectal cancer

FURTHER INFORMATION

Inke Näthke's homepage

p53 web site

Rights and permissions

Reprints and permissions

About this article

Cite this article

Näthke, I. Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of APC. Nat Rev Cancer 6, 967–974 (2006). https://doi.org/10.1038/nrc2010

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing