Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry

Abstract

A protocol is described for separating sub-20μm-sized particles contained in sedimentary rocks into size fractions. Geochemical data from manually isolated foraminifera are commonly used in the interpretation of marine palaeoenvironments; problems associated with the isolation of calcareous nannofossils hampers their geochemical exploitation. However, geochemistry performed on calcareous nannofossil monotaxic assemblages should provide more meaningful data sets than those generated from the highly heterogeneous bulk carbonate. This protocol is based on cascade filtering steps, using polycarbonate membranes with well-calibrated pores. Strong ultrasonic treatment can further be applied to selectively reduce the size of particles for greater enrichment. Obtained residues frequently comprise near-monotaxic nannofossil assemblages. The application of this technique, which can be achieved within less than 2 days, has provided distinct fractions of coccoliths, calcareous dinoflagellate shells and also diagenetic monocrystals. This protocol is designed for application in reconstructing the history of water-column physicochemistry and diagenesis. It also has the potential to provide insights into the biogeochemistry of calcareous nannoplankton, including vital effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The microfiltering apparatus; schematic diagram of the filtration column.
Figure 2: The ultrasonic disintegrator composed by the digital controller, the disruptor and the sonicator horn.
Figure 3: Cross-polarized microphotographs of site 758A (Miocene, Indian Ocean) bulk sample and separated fractions (scale bar, 20 μm).
Figure 4: Cross-polarized microphotographs of Early Toarcian black shale, Bascharage section, Luxembourg (scale bar, 10 μm).
Figure 5: Evolution of star-shaped discoasterids breakage induced by strong ultrasonic treatment (scale bar, 2 μm).
Figure 6: Monogenetic assemblages obtained after strong ultrasonic treatment and recovered by a microfiltering step (scale bar, 20 μm).
Figure 7: Scatter diagrams (C and O isotope ratios) of bulk carbonate (crosses), separated fractions (triangles for granulometric fractions and filled circle for ultrasoniced residues) and manually picked foraminifera (squares) with depth stratification given by previous works34.

Similar content being viewed by others

References

  1. Brand, U. Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: an evaluation of original seawater-chemistry proxies. Chem. Geol. 204, 23–44 (2004).

    Article  CAS  Google Scholar 

  2. Marshall, J.D. Climatic and oceanographic isotopic signals from the carbonate record and their preservation. Geol. Mag. 129, 143–160 (1992).

    Article  CAS  Google Scholar 

  3. Zachos, J.C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 696–693 (2001).

    Google Scholar 

  4. Edwards, A.R. A preparation technique for calcareous nannoplancton. Micropaleontology 9, 103–104 (1963).

    Article  Google Scholar 

  5. Katz, B.J. Preparation of calcareous nannofossils assemblages for chemical examination. J. Paleontol. 52, 497–500 (1978).

    Google Scholar 

  6. Eshet, Y. Obtaining rich nannofossils assemblages from 'barren' samples: processing organic-rich rocks in nannofossil investigation. J. Nannoplankton Res. 18, 17–21 (1996).

    Article  Google Scholar 

  7. Green, O.R. A Manual of Practical Laboratory and Field Techniques in Palaeobiology (Springer Verlag, Berlin, 2001).

    Book  Google Scholar 

  8. Paull, C.K. & Thierstein, H.R. Stable isotopic fractionation among particles in Quaternary coccolith-sized deep-sea sediments. Paleoceanography 2, 423–429 (1987).

    Article  Google Scholar 

  9. Stoll, H.M. & Ziveri, P. Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity. Mar. Micropaleontol. 46, 209–221 (2002).

    Article  Google Scholar 

  10. Stoll, H.M. et al. Insights on coccolith chemistry from a new ion probe method for analysis of individually picked coccoliths. Geochem. Geophys. Geosyst. 8 10.1029/2006GC001546 (2007).

  11. Minoletti, F., Gardin, S., Nicot, E., Renard, M. & Spezzaferri, S. Mise au point d'un protocole expérimental de séparation granulométrique d'assemblages de nannofossiles calcaires: application paléoécologiques et géochimiques. Bull. Soc. Géol. Fr. 172, 437–446 (2001).

    Article  CAS  Google Scholar 

  12. Hermoso, M., Minoletti, F., de Rafélis, M., Rickaby, R. & Hesselbo, S.P. Uncovering high strontium content in biogenic calcite: new data from a murolith-producing coccolithophore. Eos. Trans. AGU. 88 Fall Meet. Suppl., Abstract B44C-05 (2007).

  13. Hermoso, M., Minoletti, F., Rickaby, R.E.M. & Halloran, P. Determination of differential vital effects for some Neogene calcareous nannoplankton taxa. Geochimica Cosmochimica Acta. 72 (Suppl. 1): A371 (2008).

    Google Scholar 

  14. Minoletti, F., Hermoso, M. & Gressier, V. A new protocol to decipher the geochemistry of pelagic micron-sized particles: influence of bioproduction and diagenesis. Eos. Trans. AGU 87 Fall Meet. Suppl., Abstract PP12B-08 (2006).

  15. Minoletti, F., Hermoso, M. & Gressier, V. Deciphering the Geochemistry of Calcareous Pelagic Producers: Beyond Bulk Carbonate Analyses. Eos. Trans. AGU 88 Fall Meet. Suppl., Abstract PP31C–0531 (2007).

    Google Scholar 

  16. Minoletti, F., de Rafélis, M., Renard, M. & Gardin, S. Remaniement des nannofossiles calcaires maastrichtiens dans les sédiments du Danien basal de Bidart (France): arguments isotopiques (carbone et oxygène). Rev. Micropaléontol. 47, 145–152 (2004).

    Article  Google Scholar 

  17. Minoletti, F., de Rafélis, M., Renard, M., Gardin, S. & Young, J. Changes in the pelagic fine fraction carbonate sedimentation during the Cretaceous–Paleocene transition: contribution of the separation technique to the study of Bidart section. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 119–137 (2005).

    Article  Google Scholar 

  18. Beltran, C. et al. Coccolith δ18O and alkenone records in middle Pliocene orbitally-controlled deposits: high frequency temperature and salinity variations of sea surface water. Geochem. Geophys. Geosyst. 8 10.1029/2006GC001483 (2007).

  19. Hermoso, M., Le Callonnec, L., Minoletti, F., Renard, M. & Hesselbo, S.P. Expression of the early Toarcian negative carbon-isotope excursion in separated carbonate microfractions (Jurassic, Paris Basin). Earth Planet Sci. Lett. (in press). DOI:10.1016/j.epsl.2008.10.013.

  20. Lees, J.A & Minoletti, F. Separation of nannofossil size fractions by microfiltration: innovations, modifications, and results. 11th INA conference, Lincoln (Nebraska, USA), International Nannoplankton Association, Abstract volume 63 (2006).

  21. Bairbakhish, A.N., Bollmann, J., Sprengel, C. & Thierstein, H.R. Disintegration of aggregates and coccospheres in sediment trap samples. Mar. Micropaleontol. 37, 219–223 (1999).

    Article  Google Scholar 

  22. Stoll, H.M. Limited range of interspecific vital effects in coccolith stable isotopic records during the Paleocene-Eocene thermal maximum. Paleoceanography 20 10.1029/2004PA001046 (2005).

  23. Dudley, W.C. & Goodney, D.E. Oxygen isotope content of coccoliths grown in culture. Deep-sea res., Part 1, Oceanogr. Res. PAP. 26, 495–503 (1979).

    Article  CAS  Google Scholar 

  24. Dudley, W.C., Blackwelder, P., Brand, L. & Duplessy, J.C. Stable isotopic composition of coccoliths. Mar. Micropaleontol. 10, 1–8 (1986).

    Article  Google Scholar 

  25. Ziveri, P. et al. Stable isotope 'vital effects' in coccolith calcite. Earth Planet. Sci. Lett. 210, 137–149 (2003).

    Article  CAS  Google Scholar 

  26. Steinmetz, J.C. Stable isotopes in modern coccolithophores. In Coccolithophores (eds Winter, A. and Siesser, W.G.) 219–229 (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  27. Aubry, M.P. Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration. In Eocene-Oligocene Climatic and Biotic Evolution (eds Prothero, D.R. and Berggren, W.A.) 272–309 (Princeton University Press, Princeton, 1993).

    Google Scholar 

  28. Chapman, M.R. & Chepstow-Lusty, A.J. Late Pliocene climatic change and the global extinction of the discoasters: an independent assessment using oxygen isotope records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 134, 109–125 (1997).

    Article  Google Scholar 

  29. Chepstow-Lusty, A. The last million year of the discoasters: a global synthesis for the upper Pliocene. In Microfossils and Oceanic Environments (eds Moguilevsky, A. and Whatley, R.) 165–175 (University of Wales Aberystwyth-Press, Aberystwyth, 1996).

    Google Scholar 

  30. Stoll, H.M. & Ziveri, P. Coccolithophorid-based geochemical paleoproxies. In Coccolithophores: From Molecular Processes to Global Impact (eds Thierstein, H.R. and Young, J.R.) 529–562 (Springer Verlag, Berlin, 2004).

    Chapter  Google Scholar 

  31. Bellanca, A., Masetti, D. & Neri, R. Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): assessing REE sensitivity to environmental changes. Chem. Geol. 141, 141–152 (1997).

    Article  CAS  Google Scholar 

  32. Westphal, H., Munnecke, A., Pross, J. & Herrle, J.O. Multiproxy approach to understanding the origin of Cretaceous pelagic limestone–marl alternations (DSDP site 391, Blake-Bahama Basin). Sedimentology 51, 109–126 (2004).

    Article  CAS  Google Scholar 

  33. Munnecke, A., Westphal, H., Reijmer, J.J.G. & Samtleben, C. Microspar development during early marine burial diagenesis: a comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology 44, 977–990 (1997).

    Article  Google Scholar 

  34. Keller, G. Depth stratification of planktonic foraminifers. In Miocene Ocean: Paleoceanography and Biogeography—GSA Memoir 163 (ed Kennett, J.) 177–195 (Geological Society of America, Boulder, 1985).

    Chapter  Google Scholar 

Download references

Acknowledgements

We are grateful to Maurice Renard (UPMC, Paris) for opening us the door of calcareous nannofossil separation in the JE 2477 'Biominéralisations et Paléoenvironnements' Research Group in Paris, and also to Nathalie Labourdette for her technical assistance in stable isotope analyses and Grégoire Egoroff (undergraduate research assistant) for monocrystal isolation. We warmly thank Ros Rickaby and Owen Green (Oxford University) for valuable improvements of an early version of this manuscript. This protocol also benefited from the helpful contributions of Jackie Lees, Jeremy Young, and an anonymous referee. F.M. was partly supported by UPMC action 'BQR2006' and M.H. by FNR/07/MA6/21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Minoletti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minoletti, F., Hermoso, M. & Gressier, V. Separation of sedimentary micron-sized particles for palaeoceanography and calcareous nannoplankton biogeochemistry. Nat Protoc 4, 14–24 (2009). https://doi.org/10.1038/nprot.2008.200

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.200

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing