Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars

Abstract

Graphene nanoribbons combine the unique electronic and spin properties of graphene1,2 with a transport gap that arises from quantum confinement and edge effects3,4,5,6. This makes them an attractive candidate material for the channels of next-generation transistors. Nanoribbons can be made in a variety of ways, including lithographic7,8,9, chemical10,11,12 and sonochemical6 approaches, the unzipping of carbon nanotubes13,14,15,16,17, the thermal decomposition of SiC18 and organic synthesis19. However, the reliable site and alignment control of nanoribbons with high on/off current ratios20 remains a challenge. Here we control the site and alignment of narrow (23 nm) graphene nanoribbons by directly converting a nickel nanobar into a graphene nanoribbon using rapid-heating plasma chemical vapour deposition. The nanoribbons grow directly between the source and drain electrodes of a field-effect transistor without transfer, lithography and other postgrowth treatments, and exhibit a clear transport gap (58.5 meV), a high on/off ratio (>104) and no hysteresis. Complex architectures, including parallel and radial arrays of supported and suspended ribbons, are demonstrated. The process is scalable and completely compatible with existing semiconductor processes, and is expected to allow integration of graphene nanoribbons with silicon technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct conversion of a Ni nanobar to a graphene nanoribbon by RH-PCVD.
Figure 2: Raman spectroscopy of graphene nanoribbons and various architectures of graphene nanoribbons.
Figure 3: Cross-section TEM of graphene nanoribbon.
Figure 4: Electrical transport properties of graphene nanoribbons.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  3. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    Article  CAS  Google Scholar 

  4. Wakabayashi, K., Fujita, M. Ajiki, H. & Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 59, 8271–8282 (1999).

    Article  CAS  Google Scholar 

  5. Ponomarenko, L. A. et al. Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).

    Article  CAS  Google Scholar 

  6. Li, X. L., Wang, X. R., Zhang, L., Lee, S. W. & Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  7. Chen, Z. H., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E (Amsterdam) 40, 228–232 (2007).

    Article  CAS  Google Scholar 

  8. Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  9. Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotech. 3, 397–401 (2008).

    Article  CAS  Google Scholar 

  10. Datta, S. S., Strachan, D. R., Khamis, S. M. & Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 8, 1912–1915 (2008).

    Article  CAS  Google Scholar 

  11. Ci, L. et al. Controlled nanocutting of graphene. Nano Res. 1, 116–122 (2008).

    Article  CAS  Google Scholar 

  12. Campos-Delgado, J. et al. Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett. 8, 2773–2778 (2008).

    Article  CAS  Google Scholar 

  13. Jiao, L. Y., Zhang, L., Wang, X. R., Diankov, G. & Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    Article  CAS  Google Scholar 

  14. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    Article  CAS  Google Scholar 

  15. Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotech. 5, 321–325 (2010).

    Article  CAS  Google Scholar 

  16. Shimizu, T. et al. Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons. Nature Nanotech. 6, 45–50 (2010).

    Article  Google Scholar 

  17. Wang, X. et al. Graphene nanoribbons with smooth edges behave as quantum wires. Nature Nanotech. 6, 563–567 (2011).

    Article  CAS  Google Scholar 

  18. Sprinkle, M. et al. Scalable templated growth of graphene nanoribbons on SiC. Nature Nanotech. 5, 727–731 (2010).

    Article  CAS  Google Scholar 

  19. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  Google Scholar 

  20. Derycke, V., Martel, R., Appenzeller, J. & Avouris, Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 1, 453–456 (2001).

    Article  CAS  Google Scholar 

  21. Wang, X. & Dai, H. Etching and narrowing of graphene from the edges. Nature Chem. 2, 661–665 (2010).

    Article  CAS  Google Scholar 

  22. Yu, Q. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Mater. 10, 443–449 (2011).

    Article  CAS  Google Scholar 

  23. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  24. Feng, X. L., White, C. J., Hajimiri, A. & Roukes, M. L. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nature Nanotech. 3, 342–346 (2008).

    Article  CAS  Google Scholar 

  25. Han, Y. M., Brant, J. C. & Kim P. Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010).

    Article  Google Scholar 

  26. Bai, J., Duan, X. & Huang, Y. Rational fabrication of graphene nanoribbons using a nanowire etch mask. Nano Lett. 9, 2083–2087 (2009).

    Article  CAS  Google Scholar 

  27. Gunlycke, D., Areshkin, D. A. & White, C. T. Semiconducting graphene nanostrips with edge disorder. Appl. Phys. Lett. 90, 142104 (2007).

    Article  Google Scholar 

  28. Lherbier, A., Biel, B., Niquet, Y.-M. & Roche, S. Transport length scales in disordered graphene-based materials: strong localization regimes and dimensionality effects. Phys. Rev. Lett. 100, 036803 (2008).

    Article  Google Scholar 

  29. Koppens, F. H. L. et al. Universal phase shift and nonexponential decay of driven single-spin oscillations. Phys. Rev. Lett. 99, 106803 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (23740405, 21654084). The authors thank K. Tohji and K. Motomiya for their help with the EDX measurements.

Author information

Authors and Affiliations

Authors

Contributions

T.K. and R.H. conceived and designed the experiments. T.K. performed the experiments and analysed the data. T.K. and R.H. co-wrote the manuscript.

Corresponding author

Correspondence to Toshiaki Kato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3010 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, T., Hatakeyama, R. Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars. Nature Nanotech 7, 651–656 (2012). https://doi.org/10.1038/nnano.2012.145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing