Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-organized nanotube serpentines

Abstract

Carbon nanotubes1 have unique mechanical, electronic, optical and thermal properties, which make them attractive building blocks in the field of nanotechnology2. However, their organization into well-defined straight or curved geometries and arrays on surfaces remains a critical challenge for their integration into functional nanosystems. Here we show that combined surface- and flow-directed growth enable the controlled formation of uniquely complex and coherent geometries of single-walled carbon nanotubes, including highly oriented and periodic serpentines and coils. We propose a mechanism of non-equilibrium self-organization3, in which competing dissipative forces of adhesion and aerodynamic drag induce oscillations in the nanotubes as they adsorb on the surface. Our results demonstrate the use of ‘order through fluctuations’3 to shape nanostructures into complex geometries. The nanotube serpentines and loops are shown to be electrically conducting and could therefore find a wide range of potential applications, such as receiving and transmitting antennas, heating and cooling elements, optoelectronic devices and single-molecule dynamos.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative nanotube serpentines.
Figure 3: Nanotube diameter effect on serpentine shape.
Figure 2: Flow rate and direction effects on serpentine shape.
Figure 4: Electrical characterization of nanotube serpentines.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  2. Jorio, A., Dresselhaus, M. S. & Dresselhaus, G. (eds) Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Series: Topics in Applied Physics, Vol. 111 (Springer, Heidelberg, 2008).

    Book  Google Scholar 

  3. Nicolis, G. & Prigogine, I. Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order through Fluctuations (John Wiley, New York, 1977).

    Google Scholar 

  4. Springel, V., Frenk, C. S. & White, S. D. M. The large-scale structure of the Universe. Nature 440, 1137–1144 (2006).

    Article  CAS  Google Scholar 

  5. Werner, B. T. Complexity in natural landform patterns. Science 284, 102–104 (1999).

    Article  CAS  Google Scholar 

  6. Vollbrecht, E. et al. Architecture of floral branch systems in maize and related grasses. Nature 436, 1119–1126 (2005).

    Article  CAS  Google Scholar 

  7. Lumelsky, N. et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394 (2001).

    Article  CAS  Google Scholar 

  8. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

  9. Avouris, P. Molecular electronics with carbon nanotubes. Acc. Chem. Res. 35, 1026–1034 (2002).

    Article  CAS  Google Scholar 

  10. Liu, J. et al. Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem. Phys. Lett. 303, 125–129 (1999).

    Article  CAS  Google Scholar 

  11. Diehl, M. et al. Self-assembled, deterministic carbon nanotube wiring networks. Angew. Chem. Int. Edn 41, 353–356 (2001).

    Article  Google Scholar 

  12. Krupke, R., Hennrich, F., von Lohneysen, H. & Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003).

  13. Joselevich, E. & Lieber, C. M. Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett. 2, 1137–1141 (2002).

  14. Huang, S., M. Cai, X. Y. & Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 125, 5636–5637 (2003).

  15. Ismach, A., Segev, L., Wachtel, E. & Joselevich, E. Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Edn 43, 6140–6143 (2004).

    Article  CAS  Google Scholar 

  16. Ismach, A., Kantorovich, D. & Joselevich, E. Carbon nanotube graphoepitaxy: Highly oriented growth by faceted nanosteps. J. Am. Chem. Soc. 127, 11554–11555 (2005).

    Article  CAS  Google Scholar 

  17. Han, S., Liu, X. L. & Zhou, C. W. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 127, 5294–5295 (2005).

  18. Ago, H. et al. Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett. 408, 433–438 (2005).

    Article  CAS  Google Scholar 

  19. Kocabas, C. et al. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1, 1110–1116 (2005).

    Article  CAS  Google Scholar 

  20. Ismach, A. & Joselevich, E. Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth. Nano Lett. 6, 1706–1710 (2006).

    Article  CAS  Google Scholar 

  21. Rueckes, T. et al. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000).

    Article  CAS  Google Scholar 

  22. Refael, G., Heo, J. S. & Bockrath, M. Sagnac interference in carbon nanotube loops. Phys. Rev. Lett. 98, 246803 (2007).

  23. Wang, Y. et al. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl Acad. Sci. USA 103, 2026–2031 (2006).

    Article  CAS  Google Scholar 

  24. Tsukruk, V., Ko, H. & Peleshanko, S. Nanotube surface arrays: Weaving, bending, and assembling on patterned silicon. Phys. Rev. Lett. 92, (2004).

  25. Duggal, R. & Pasquali, M. Dynamics of individual single-walled carbon nanotubes in water by real-time visualization. Phys. Rev. Lett. 96, 246104 (2006).

    Article  Google Scholar 

  26. Hertel, T., Walkup, R. E. & Avouris, P. Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 58, 13870–13873 (1998).

  27. Kurin-Csorgei, K., Epstein, I. R & Orban, M. Systematic design of chemical oscillators using complexation and precipitation equilibria. Nature 433, 139–142 (2005).

  28. Bachtold, A. et al. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 84, 6082–6085 (2000).

    Article  CAS  Google Scholar 

  29. Kang, S. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007).

    Article  CAS  Google Scholar 

  30. Wang, Y. et al. Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes. Appl. Phys. Lett. 85, 2607–2609 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Israel Science Foundation, the US–Israel Binational Science Foundation, the Kimmel Center for Nanoscale Science, and the Djanogly, Alhadeff and Perlman Family foundations. E.J. holds the Victor Erlich Career Development Chair. We thank A. Jorio, G. Cançado and L. Novotny for Raman characterization, R. Popovitz-Biro for TEM characterization, A. Yoffe for assistance with the cleanroom facilities, R. Naaman for allowing us to use his electrical probe station, and N. Gov, K.S. Nagapriya and T. Yarden for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Joselevich.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geblinger, N., Ismach, A. & Joselevich, E. Self-organized nanotube serpentines. Nature Nanotech 3, 195–200 (2008). https://doi.org/10.1038/nnano.2008.59

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.59

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing