Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optically monitoring the mechanical assembly of single molecules

This article has been updated

Abstract

Bottom-up assembly at the level of individual molecules requires a combination of utmost spatial precision and efficient monitoring. We have previously shown how to ‘cut-and-paste’ single molecules1, and other groups have demonstrated that it is possible to beat the diffraction limit in optical microscopy2,3,4. Here we show that a combination of single-molecule cut-and-paste surface assembly1, total internal reflection fluorescence microscopy and atomic force microscopy5,6,7,8 can be used to deposit individual fluorophores in well-defined nanoscale patterns and also to monitor the process in real time with nanometre precision. Although the size of the pattern is well below the optical resolution of the microscope, the individual dyes are identified by localizing the centroids and detecting the photobleaching of the fluorophores. With this combination of methods, individual dyes or labelled biomolecules can be arranged at will for specific functions, such as coupled fluorophore systems or tailored enzyme cascades, and monitored with nanoscale precision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monitoring the deposition of a single molecule by AFM and TIRF microscopy.
Figure 2: Localizing single molecules with nanometre precision.
Figure 3: Positional accuracy of the SMCP process.
Figure 4: Determining the position of deposited dyes by photobleaching.

Similar content being viewed by others

Change history

  • 08 December 2008

    In the version of this Letter originally published online, reference 27 was missing its full details. This has now been corrected in the HTML and PDF versions.

References

  1. Kufer, S. K., Puchner, E. M., Gumpp, H., Liedl, T. & Gaub, H. E. Single-molecule cut-and-paste surface assembly. Science 319, 594–596 (2008).

    Article  CAS  Google Scholar 

  2. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  Google Scholar 

  3. Xie, X. S. & Dunn, R. C. Probing single molecule dynamics. Science 265, 361–364 (1994).

    Article  CAS  Google Scholar 

  4. Dyba, M. & Hell, S. W. Focal spots of size lambda λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88, 163901 (2002).

    Article  Google Scholar 

  5. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  6. Hansma, P. K., Elings, V. B., Marti, O. & Bracker, C. E. Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. Science 242, 209–216 (1988).

    Article  CAS  Google Scholar 

  7. Radmacher, M., Tillmann, R. W., Fritz, M. & Gaub, H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science 257, 1900–1905 (1992).

    Article  CAS  Google Scholar 

  8. Duwez, A. S. et al. Mechanochemistry: targeted delivery of single molecules. Nature Nanotech. 1, 122–125 (2006).

    Article  CAS  Google Scholar 

  9. Bobroff, N. Position measurement with a resolution and noise-limited instrument. Rev. Sci. Instrum. 57, 1152–1157 (1986).

    Article  Google Scholar 

  10. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  Google Scholar 

  11. Ober, R. J., Ram, S. & Ward, E. S. Localization accuracy in single-molecule microscopy. Biophys. J. 86, 1185–1200 (2004).

    Article  CAS  Google Scholar 

  12. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  13. Qu, X., Wu, D., Mets, L. & Scherer, N. F. Nanometer-localized multiple single-molecule fluorescence microscopy. Proc. Natl Acad. Sci. USA 101, 11298–11303 (2004).

    Article  CAS  Google Scholar 

  14. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  Google Scholar 

  15. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793–796 (2006).

    Article  CAS  Google Scholar 

  16. Gordon, M. P., Ha, T. & Selvin, P. R. Single-molecule high-resolution imaging with photobleaching. Proc. Natl Acad. Sci. USA 101, 6462–6465 (2004).

    Article  CAS  Google Scholar 

  17. Tinnefeld, P. & Sauer, M. Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. Angew. Chem. Int. Ed. 44, 2642–2671 (2005).

    Article  CAS  Google Scholar 

  18. Lacoste, T. D. et al. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl Acad. Sci. USA 97, 9461–9466 (2000).

    Article  CAS  Google Scholar 

  19. Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F. & Spudich, J. A. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc. Natl Acad. Sci. USA 102, 1419–1423 (2005).

    Article  CAS  Google Scholar 

  20. Gaiduk, A., Kühnemuth, R., Antonik, M. & Seidel, C. A. M. Optical characteristics of atomic force microscopy tips for single-molecule fluorescence applications. Chem. Phys. Chem. 6, 976–983 (2005).

    Article  CAS  Google Scholar 

  21. Baum, R. Nanotechnology: Drexler and Smalley make the case for and against ‘molecular assemblers’. Chem. Eng. News 81, 37–42 (2003).

    Google Scholar 

  22. Bek, A. et al. Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano Lett. 8, 485–490 (2008).

    Article  CAS  Google Scholar 

  23. Kühner, F., Lugmaier, R., Mihatsch, S. & Gaub, H. E. Print your atomic force microscope. Rev. Sci. Instrum. 78, 075105 (2007).

    Article  Google Scholar 

  24. Morfill, J. et al. B–S transition in short oligonucleotides. Biophys. J. 93, 2400–2409 (2007).

    Article  CAS  Google Scholar 

  25. Florin, E. L. et al. Sensing specific molecular interactions with the atomic force microscope. Biosen. Bioelectr. 10, 895–901 (1995).

    Article  CAS  Google Scholar 

  26. Butt, H.-J. & Jaschke, M. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1–7 (1995).

    Article  Google Scholar 

  27. Puchner, E. M., Kufer, S. K., Strackharn, M., Stahl, S. W. & Gaub, H. E. Nanoparticle self-assembly on a DNA-scaffold written by single-molecule cut-and-paste. Nano Lett. 8, 3692–3695 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Tinnefeld and A. Fornof for helpful discussions. This work was supported by the German Science Foundation, the Nanosystems Initiative Munich (NIM) and Functional Nanosystems (FuNS).

Author information

Authors and Affiliations

Authors

Contributions

S.K.K. and H.E.G. conceived and designed the experiments and co-wrote the paper. S.K.K., M.S. and S.W.S. performed the experiments. S.K.K. and E.M.P. analysed the data. M.S., S.W.S., H.G. and E.M.P. built the AFM–TIRF setup. M.S., S.K.K. and H.E.G. developed the theoretical model of the SMCP spatial uncertainty.

Corresponding author

Correspondence to Hermann E. Gaub.

Supplementary information

Supplementary Information

Supplementary Information (PDF 449 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1678 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2935 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kufer, S., Strackharn, M., Stahl, S. et al. Optically monitoring the mechanical assembly of single molecules. Nature Nanotech 4, 45–49 (2009). https://doi.org/10.1038/nnano.2008.333

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.333

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing