Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes

Abstract

The global boron geochemical cycle is closely linked to recycling of geologic material via subduction processes that have occurred over billions of years of Earth’s history. The origin of carbonatites, unique melts derived from carbon-rich and carbonate-rich regions of the upper mantle, has been linked to a variety of mantle-related processes, including subduction and plume–lithosphere interaction. Here we present boron isotope (δ11B) compositions for carbonatites from locations worldwide that span a wide range of emplacement ages (between 40 and 2,600 Ma). Hence, they provide insight into the temporal evolution of their mantle sources for 2.6 billion years of Earth’s history. Boron isotope values are highly variable and range between −8.6‰ and +5.5‰, with all of the young (<300 Ma) carbonatites characterized by more positive δ11B values (>−4.0‰), whereas most of the older carbonatite samples record lower B isotope values. Given the δ11B value for asthenospheric mantle of −7 ± 1‰, the B isotope compositions for young carbonatites require the involvement of an enriched (crustal) component. Recycled crustal components may be sampled by carbonatite melts associated with mantle plume activity coincident with major tectonic events, and linked to past episodes of significant subduction associated with supercontinent formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nd and Sr isotopic signature of carbonatite magmatism.
Figure 2: δ13CPDB (‰) and δ18OSMOW (‰) values for carbonatites worldwide (blue field) compared with those from sedimentary15 and igneous sources28,29.
Figure 3: B isotopic signature of carbonatite magmatism through time.

Similar content being viewed by others

References

  1. Chaussidon, M. & Jambon, A. Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. Earth Planet. Sci. Lett. 259, 541–556 (1994).

    Google Scholar 

  2. Spivack, A. J. & Edmond, J. M. Boron isotope exchange between seawater and the oceanic crust. Geochim. Cosmochim. Acta 51, 1033–1043 (1987).

    Article  Google Scholar 

  3. Palmer, M. R. & Swihart, G. H. Boron isotope geochemistry: an overview. Rev. Mineral. 33, 709–744 (1996).

    Google Scholar 

  4. Konrad-Schmolke, M. & Halama, R. Combined thermodynamic-geochemical modeling in metamorphic geology: boron as tracer of fluid-rock interaction. Lithos 208–209, 393–414 (2014).

    Article  Google Scholar 

  5. Wunder, B., Meixner, A., Romer, R. L., Wirth, R. & Heinrich, W. The geochemical cycle of boron: constraints from boron isotope partitioning experiments between mica and fluid. Lithos 84, 206–216 (2005).

    Article  Google Scholar 

  6. Woolley, A. R. & Kjarsgaard, B. A. Carbonatite Occurrences of the World: Map and Database (Geological Survey of Canada, 2008).

    Book  Google Scholar 

  7. Luth, R. W. Diamonds, eclogites, and the oxidation-state of the Earth’s mantle. Science 261, 66–68 (1993).

    Article  Google Scholar 

  8. Dasgupta, R. & Hirschmann, M. M. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440, 659–662 (2006).

    Article  Google Scholar 

  9. Yaxley, G. M., Green, D. H. & Kamenetsky, V. Carbonatite metasomatism in the southeastern Australian lithosphere. J. Petrol. 39, 1917–1930 (1998).

    Article  Google Scholar 

  10. Rukhlov, A. S. & Bell, K. Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution. Mineral. Petrol. 98, 11–54 (2010).

    Article  Google Scholar 

  11. Bell, K., Blenkinsop, J., Cole, T. J. S. & Menagh, D. P. Evidence from Sr isotopes for long-lived heterogeneities in the upper mantle. Nature 298, 251–253 (1982).

    Article  Google Scholar 

  12. Halama, R., McDonough, W. F., Rudnick, R. L. & Bell, K. Tracking the lithium isotopic evolution of the mantle using carbonatites. Earth Planet. Sci. Lett. 265, 726–742 (2008).

    Article  Google Scholar 

  13. Woolley, A. R. The Spatial and Temporal Distribution of Carbonatites: Carbonatites: Genesis and EvolutionCh. 2 (Unwin Hyman, 1989).

    Google Scholar 

  14. Veizer, J., Bell, K. & Jansen, S. L. Temporal distribution of carbonatites. Geology 20, 1147–1149 (1992).

    Article  Google Scholar 

  15. Bell, K. & Simonetti, A. Source of parental melts to carbonatites–critical isotopic constraints. Mineral. Petrol. 98, 77–89 (2010).

    Article  Google Scholar 

  16. Bell, K. & Tilton, G. R. Probing the mantle: the story from carbonatites. Eos Trans. Am. Geophys. Union 83, 273–280 (2002).

    Article  Google Scholar 

  17. Zindler, A. & Hart, S. R. Chemical dynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    Article  Google Scholar 

  18. Weiss, Y., Class, C., Goldstein, S. L. & Hanyu, T. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature 537, 666–670 (2016).

    Article  Google Scholar 

  19. Bizzarro, M., Simonetti, A., Stevenson, R. K. & David, J. Hf isotope evidence for a hidden mantle reservoir. Geology 30, 771–774 (2002).

    Article  Google Scholar 

  20. Barker, D. S. Consequences of recycled carbon in carbonatites. Can. Mineral. 34, 373–387 (1996).

    Google Scholar 

  21. Hoernle, K., Tilton, G., Le Bas, M. J., Duggen, S. & Garbe-Schönberg, D. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib. Mineral. Petrol. 142, 520–542 (2002).

    Article  Google Scholar 

  22. D’Orazio, M., Innocenti, F., Tonarini, S. & Doglioni, C. Carbonatites in a subduction system: the Pleistocene alvikites from Mt. Vulture (southern Italy). Lithos 98, 313–334 (2007).

    Article  Google Scholar 

  23. Bell, K., Lavecchia, G. & Rosatelli, G. Cenozoic Italian magmatism—Isotope constraints for possible plume-related activity. J. South Am. Earth Sci. 41, 22–40 (2013).

    Article  Google Scholar 

  24. Mitchell, R. H. Carbonatites and carbonatites and carbonatites. Can. Mineral. 43, 2049–2068 (2005).

    Article  Google Scholar 

  25. Smart, K. A., Tappe, S., Stern, R. A., Webb, S. J. & Ashwal, L. D. Early Archaean tectonics and mantle redox recorded in Witwatersrand diamonds. Nat. Geosci. 9, 255–259 (2016).

    Article  Google Scholar 

  26. Hulett, S. W. R. Boron Abundances and Isotope Systematics of Carbonatites from Worldwide Sources MS thesis, Univ. Notre Dame (2016).

  27. Chaussidon, M. & Marty, B. Primitive boron isotope composition of the mantle. Science 269, 383–386 (1995).

    Article  Google Scholar 

  28. Keller, J. & Hoefs, J. Stable Isotope Characteristics of Recent Natrocarbonatites from Oldoinyo Lengai: Carbonatite Volcanism IAVCEI Proceedings in Volcanology Vol. 4 (Springer, 1995).

    Book  Google Scholar 

  29. Deines, P. Stable Isotope Variations in Carbonatites: Carbonatites: Genesis and EvolutionCh. 13 (Unwin Hyman, 1989).

    Google Scholar 

  30. Turner, S., Tonarini, S., Bindeman, I., Leeman, W. P. & Schaefer, B. F. Boron and oxygen isotope evidence for recycling of subducted components over the past 2.5 Gyr. Nature 447, 702–705 (2007).

    Article  Google Scholar 

  31. Genske, F. S. et al. Lithium and boron isotope systematics in lavas from the Azores islands reveal crustal assimilation. Chem. Geol. 273, 27–36 (2014).

    Article  Google Scholar 

  32. Jones, A. P., Genge, M. & Carmody, L. Carbonate melts and carbonatites. Rev. Mineral. Geochem. 75, 289–322 (2013).

    Article  Google Scholar 

  33. Simonetti, A., Goldstein, S. L., Schmidberger, S. S. & Viladkar, S. G. Geochemical and Nd, Pb, and Sr isotope data from Deccan alkaline complexes—inferences for mantle sources and plume–lithosphere interaction. J. Petrol. 39, 1847–1864 (1998).

    Article  Google Scholar 

  34. Meert, J. G. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362, 1–40 (2003).

    Article  Google Scholar 

  35. Zhao, G., Sun, M., Wilde, S. A. & Li, S. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: records in the North China Craton. Gondwana Res. 6, 417–434 (2003).

    Article  Google Scholar 

  36. Shaw, A. M. et al. Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes. Nat. Geosci. 5, 224–228 (2012).

    Article  Google Scholar 

  37. Hammouda, T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet. Sci. Lett. 214, 357–368 (2003).

    Article  Google Scholar 

  38. Yaxley, G. M. & Brey, G. P. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib. Mineral. Petrol. 146, 606–619 (2004).

    Article  Google Scholar 

  39. Dasgupta, R., Hirschmann, M. M. & Withers, A. W. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite. Earth Planet. Sci. Lett. 227, 73–85 (2004).

    Article  Google Scholar 

  40. Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 75, 183–229 (2013).

    Article  Google Scholar 

  41. Lay, T., Hernlund, J. & Buffett, B. A. Core-mantle boundary heat flow. Nat. Geosci. 1, 25–32 (2008).

    Article  Google Scholar 

  42. Collins, W. J. Slab pull, mantle convection, and Pangaean assembly and dispersal. Earth Planet. Sci. Lett. 205, 225–237 (2003).

    Article  Google Scholar 

  43. Stern, R. J. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33, 557–560 (2005).

    Article  Google Scholar 

  44. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  Google Scholar 

  45. Ernst, R. E. & Bell, K. Large igneous provinces (LIPs) and carbonatites. Mineral. Petrol. 98, 55–76 (2010).

    Article  Google Scholar 

  46. Maloof, A. C. et al. The earliest Cambrian record of animals and ocean geochemical change. Geol. Soc. Am. Bull. 122, 1731–1774 (2010).

    Article  Google Scholar 

  47. Mirota, M. D. & Veizer, J. Geochemistry of Precambrian carbonates: VI. Aphebian Albanel Formations, Quebec, Canada. Geochim. Cosmochim. Acta 58, 1735–1745 (1994).

    Article  Google Scholar 

  48. Bell, K. & Blenkinsop, J. Neodymium and Strontium Isotope Geochemistry of Carbonatites: Carbonatites: Genesis and EvolutionCh. 12 (Unwin Hyman, 1989).

    Google Scholar 

  49. Bell, K. & Tilton, G. R. Nd, Pb and Sr isotope compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity. J. Petrol. 42, 1927–1945 (2001).

    Article  Google Scholar 

  50. Zagnitko, V., Kryvdik, S. & Donskiy, M. Isotope geochemistry of carbonatites of Ukraine. Period. Mineral. 72, 153–159 (2003).

    Google Scholar 

  51. Chen, W. & Simonetti, A. Isotopic (Pb, Sr, Nd, C, O) evidence for plume-related sampling of an ancient, depleted mantle reservoir. Lithos 216–217, 81–92 (2015).

    Article  Google Scholar 

  52. Foster, G. L. Seawater pH, pCO2 and [CO32−] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271, 254–266 (2008).

    Article  Google Scholar 

  53. Lemarchand, D., Gaillardet, J., Göpel, C. & Manhes, G. An optimized procedure for boron separation and mass spectrometry analysis for river samples. Chem. Geol. 182, 323–334 (2002).

    Article  Google Scholar 

  54. McCrea, J. M. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18, 849–857 (1950).

    Article  Google Scholar 

  55. Coplen, T. B. et al. New guidelines for δ13C measurements. Anal. Chem. 78, 2439–2441 (2006).

    Article  Google Scholar 

  56. Craig, H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133, 1833–1834 (1961).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Bell for donating most of the carbonatite samples investigated here. S. Hulett is appreciative of the assistance provided by D. Birdsell (Center for Environmental Science Technology (CEST), University of Notre Dame) in relation to the stable C and O isotope analyses and use of the micro-X-ray fluorescence instrument. I. Steele and B. Monaco are thanked for help with conducting EMP and LA-ICP-MS analyses. The work reported here was possible owing to financial support from the University of Notre Dame.

Author information

Authors and Affiliations

Authors

Contributions

A.S. and S.R.W.H. conceived the model and prepared the initial manuscript. S.R.W.H. conducted all of the analytical work reported here at the University of Notre Dame, and E.T.R. and N.G.H. supervised S.R.W.H. during a 1-week instructional visit at Stony Brook. E.T.R. conducted the ion exchange chemistry and B isotope analyses on four carbonatite samples at Stony Brook University. All authors contributed to preparation of the final manuscript.

Corresponding author

Correspondence to Antonio Simonetti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulett, S., Simonetti, A., Rasbury, E. et al. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nature Geosci 9, 904–908 (2016). https://doi.org/10.1038/ngeo2831

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2831

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing