Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

[Ca2+]i signalling in sperm — making the most of what you've got

Abstract

Thanks to a worrying decrease in male fertility, understanding how sperm 'work' is a matter both of interest and great importance. Sperm of all animals detect various environmental cues. The 'behavioural' and physiological responses of sperm must be specific, appropriate and correctly timed. Strangely, in a cell with few organelles and minimal cytoplasmic volume, internal Ca2+ concentration, [Ca2+]i, regulates almost all these activities. How does such a simple cell achieve this — and is it as simple as it seems?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The journey of a human sperm.
Figure 2: Structural simplicity and complex [Ca2+]i signalling in sperm.
Figure 3: Chemotaxis in sea urchin sperm (based on refs. 5153).
Figure 4: Chemotaxis and regulation of flagellar beat mode by [Ca2+]i in human sperm.

Similar content being viewed by others

References

  1. Hull, M. G. et al. Population study of causes, treatment, and outcome of infertility. BMJ 291, 1693–1697 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharpe, R. M. & Irvine, D. S. How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health? BMJ 328, 447–451 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. http://www.hfea.gov.uk/cps/rde/xbcr/SID-3F57D79B-12E4689D/hfea/facts_and_figures.pdf

  4. http://www.cdc.gov/ART/ART2003/PDF/ART03part1.pdf

  5. Andersen, A. N. et al. High frequencey of sub-optimal semen quality in an unselected population of young men. Hum. Reprod. 15, 366–372 (2005).

    Google Scholar 

  6. Maher, E. R. Imprinting and assisted reproductive technology. Hum. Mol. Genet. 14, R133–R138 (2005).

    CAS  PubMed  Google Scholar 

  7. Hansen, M., Bower, C., Milne, E., de Klerk, N. & Kurinczuk, J. J. Assisted reproductive technologies and the risk of birth defects — a systematic review. Hum. Reprod. 20, 328–338 (2005).

    PubMed  Google Scholar 

  8. Strauss, J. F., 3rd & Kafrissen, M. Waiting for the second coming. Nature 432, 43–45 (2004).

    CAS  PubMed  Google Scholar 

  9. Sitruk-Ware, R. New progestagens for contraceptive use. Hum. Reprod. 12, 169–178 (2006).

    CAS  Google Scholar 

  10. http://www.ic.nhs.uk/pubs/contraceng2005/sb0506.pdf/file

  11. Holden, C. A. et al. Sexual activity, fertility and contraceptive use in middle-aged and older men: Men in Australia, Telephone Survey (MATeS). Hum. Reprod. 20, 3429–3434 (2005).

    CAS  PubMed  Google Scholar 

  12. Barratt, C. L. & Publicover, S. J. Interaction between sperm and zona pellucida in male fertility. Lancet 358, 1660–1662 (2001).

    CAS  PubMed  Google Scholar 

  13. Forti, G. et al. Effects of progesterone on human spermatozoa: clinical implications. Ann. Endocrinol. 60, 107–110 (1999).

    CAS  Google Scholar 

  14. Carlson, A. E. et al. CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proc. Natl Acad. Sci. USA 100, 14864–14868 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu de, Y. & Baker, H. W. Disordered zona pellucida-induced acrosome reaction and failure of in vitro fertilization in patients with unexplained infertility. Fertil. Steril. 79, 74–80 (2003).

    PubMed  Google Scholar 

  16. Okunade, G. W. et al. Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J. Biol. Chem. 279, 33742–33750 (2004).

    CAS  PubMed  Google Scholar 

  17. Schuh, K. et al. Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility. J. Biol. Chem. 279, 28220–28226 (2004).

    CAS  PubMed  Google Scholar 

  18. Neill, A. T. & Vacquier, V. D. Ligands and receptors mediating signal transduction in sea urchin spermatozoa. Reproduction 127, 141–149 (2004).

    CAS  PubMed  Google Scholar 

  19. Eisenbach, M. & Giojalas, L. C. Sperm guidance in mammals — an unpaved road to the egg. Nature Rev. Mol. Cell. Biol. 7, 276–285 (2006).

    CAS  Google Scholar 

  20. Kaupp, U. B., Hildebrand, E. & Weyand, I. Sperm chemotaxis in marine invertebrates-molecules and mechanisms. J. Cell Physiol. 208, 487–494 (2006).

    CAS  PubMed  Google Scholar 

  21. Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. Hum. Reprod. 12, 23–37 (2006).

    CAS  Google Scholar 

  22. Marquez, B. & Suarez, S. S. Different signaling pathways in bovine sperm regulate capacitation and hyperactivation. Biol. Reprod. 70, 1626–1633 (2004).

    CAS  PubMed  Google Scholar 

  23. Yanagimachi, R. The Physiology of Reproduction (Raven Press, New York, 1994).

    Google Scholar 

  24. Saunders, C. M. et al. PLC ζ: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129, 3533–3544 (2002).

    CAS  PubMed  Google Scholar 

  25. Ainsworth, C. Cell biology: the secret life of sperm. Nature 436, 770–771 (2005).

    CAS  PubMed  Google Scholar 

  26. Rassoulzadegan, M. et al. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474 (2006).

    CAS  PubMed  Google Scholar 

  27. Gur, Y. & Breitbart, H. Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev. 20, 411–416 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Breitbart, H. Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol. Cell. Endocrinol. 187, 139–144 (2002).

    CAS  PubMed  Google Scholar 

  29. Hess, K. C. et al. The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev. Cell 9, 249–259 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Evans, J. P. & Florman, H. M. The state of the union: the cell biology of fertilization. Nature Cell Biol. 4, S57–S63 (2002).

    PubMed  Google Scholar 

  31. Suarez, S. S. & Ho, H. C. Hyperactivation of mammalian sperm. Cell. Mol. Biol. 49, 351–356 (2003).

    CAS  PubMed  Google Scholar 

  32. Harper, C. V., Barratt, C. L. & Publicover, S. J. Stimulation of human spermatozoa with progesterone gradients to simulate approach to the oocyte. J. Biol. Chem. 279, 46315–46325 (2004).

    CAS  PubMed  Google Scholar 

  33. Darszon, A. et al. Calcium channels and Ca2+ fluctuations in sperm physiology. Int. Rev. Cytol. 243, 79–172 (2005).

    CAS  PubMed  Google Scholar 

  34. Darszon, A. et al. Sperm channel diversity and functional multiplicity. Reproduction 131, 977–988 (2006).

    CAS  PubMed  Google Scholar 

  35. Jimenez-Gonzalez, C., Michelangeli, F., Harper, C. V., Barratt, C. L. & Publicover, S. J. Calcium signalling in human spermatozoa: a specialized 'toolkit' of channels, transporters and stores. Hum. Reprod. 12, 253–267 (2006).

    CAS  Google Scholar 

  36. Wennemuth, G., Babcock, D. F. & Hille, B. Calcium clearance mechanisms of mouse sperm. J. Gen. Physiol. 122, 115–128 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gunaratne, H. J., Neill, A. T. & Vacquier, V. D. Plasma membrane calcium ATPase is concentrated in the head of sea urchin spermatozoa. J. Cell. Physiol. 207, 413–419 (2006).

    CAS  PubMed  Google Scholar 

  38. Walensky, L. D. & Snyder, S. H. Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm. J. Cell Biol. 130, 857–869 (1995).

    CAS  PubMed  Google Scholar 

  39. Kuroda, Y., Kaneko, S., Yoshimura, Y., Nozawa, S. & Mikoshiba, K. Are there inositol 1,4,5-triphosphate (IP3) receptors in human sperm? Life Sci. 65, 135–143 (1999).

    CAS  PubMed  Google Scholar 

  40. Minelli, A., Allegrucci, C., Rosati, R. & Mezzasoma, I. Molecular and binding characteristics of IP3 receptors in bovine spermatozoa. Mol. Reprod. Dev. 56, 527–533 (2000).

    CAS  PubMed  Google Scholar 

  41. Ho, H. C. & Suarez, S. S. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol. Reprod. 68, 1590–1596 (2003).

    CAS  PubMed  Google Scholar 

  42. Naaby-Hansen, S. et al. Co-localization of the inositol 1,4,5-trisphosphate receptor and calreticulin in the equatorial segment and in membrane bounded vesicles in the cytoplasmic droplet of human spermatozoa. Mol. Hum. Reprod. 7, 923–933 (2001).

    CAS  PubMed  Google Scholar 

  43. Marquez, B., Ignotz, G. & Suarez, S. S. Contributions of extracellular and intracellular Ca2+ to regulation of sperm motility: Release of intracellular stores can hyperactivate CatSper1 and CatSper2 null sperm. Dev Biol. doi: 10.1016/j.ydbio.006.11 (2006)

  44. Gunaratne, H. J. & Vacquier, V. D. Evidence for a secretory pathway Ca2+-ATPase in sea urchin spermatozoa. FEBS Lett. 580, 3900–3904 (2006).

    CAS  PubMed  Google Scholar 

  45. Suarez, S. S. & Dai, X. Intracellular calcium reaches different levels of elevation in hyperactivated and acrosome-reacted hamster sperm. Mol. Reprod. Dev. 42, 325–333 (1995).

    CAS  PubMed  Google Scholar 

  46. Meizel, S. The sperm, a neuron with a tail: 'neuronal' receptors in mammalian sperm. Biol. Rev. Camb. Philos. Soc. 79, 713–732 (2004).

    PubMed  Google Scholar 

  47. Kirichok, Y., Navarro, B. & Clapham, D. E. Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439, 737–740 (2006).

    CAS  PubMed  Google Scholar 

  48. Qi, H., Moran, M. M. et al. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc. Natl Acad. Sci. USA 104, 1219–1223 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Carlson, A. E. et al. Identical phenotypes of CatSper1 and CatSper2 null sperm. J. Biol. Chem. 280, 32238–32244 (2005).

    CAS  PubMed  Google Scholar 

  50. Wood, C. D., Darszon, A. & Whitaker, M. Speract induces calcium oscillations in the sperm tail. J. Cell Biol. 161, 89–101 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bohmer, M. et al. Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO J. 24, 2741–2752 (2005).

    PubMed  PubMed Central  Google Scholar 

  52. Wood, C. D., Nishigaki, T., Furuta, T., Baba, S. A. & Darszon, A. Real-time analysis of the role of Ca2+ in flagellar movement and motility in single sea urchin sperm. J. Cell Biol. 169, 725–731 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Strünker, T. et al. A K+-selective cGMP-gated ion channel controls chemosensation of sperm. Nature Cell Biol. 8, 1149–1154 (2006).

    PubMed  Google Scholar 

  54. Spehr, M. et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299, 2054–2058 (2003).

    CAS  PubMed  Google Scholar 

  55. Spehr, M. et al. Particulate adenylate cyclase plays a key role in human sperm olfactory receptor-mediated chemotaxis. J. Biol. Chem. 279, 40194–40203 (2004).

    CAS  PubMed  Google Scholar 

  56. Neuhaus, E. M., Mashukova, A., Barbour, J., Wolters, D. & Hatt, H. Novel function of β-arrestin2 in the nucleus of mature spermatozoa. J. Cell Sci. 119, 3047–3056 (2006).

    CAS  PubMed  Google Scholar 

  57. Fukuda, N., Yomogida, K., Okabe, M. & Touhara, K. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J. Cell Sci. 117, 5835–5845 (2004).

    CAS  PubMed  Google Scholar 

  58. Wennemuth, G., Carlson, A. E., Harper, A. J. & Babcock, D. F. Bicarbonate actions on flagellar and Ca2+ -channel responses: initial events in sperm activation. Development 130, 1317–1326 (2003).

    CAS  PubMed  Google Scholar 

  59. Castanas, E. Membrane steroid receptor signaling in normal and neoplastic cells. Mol. Cell. Endocrinol. 246, 76–82 (2006).

    PubMed  Google Scholar 

  60. Zhu, Y., Rice, C. D., Pang, Y., Pace, M. & Thomas, P. Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc. Natl Acad. Sci. USA 100, 2231–2236 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Thomas, P. et al. Binding characteristics, hormonal regulation and identity of the sperm membrane progestin receptor in Atlantic croaker. Steroids 70, 427–433 (2005).

    CAS  PubMed  Google Scholar 

  62. Bedu-Addo, K., Barratt, C. L., Kirkman-Brown, J. C. & Publicover, S. J. Patterns of [Ca2+]i mobilization and cell response in human spermatozoa exposed to progesterone. Dev. Biol. 302, 324–332 (2007).

    CAS  PubMed  Google Scholar 

  63. De Blas, G. et al. The intraacrosomal calcium pool plays a direct role in acrosomal exocytosis. J. Biol. Chem. 277, 49326–49331 (2002).

    CAS  PubMed  Google Scholar 

  64. Fukami, K. et al. Phospholipase Cδ4 is required for Ca2+ mobilization essential for acrosome reaction in sperm. J. Cell Biol. 161, 79–88 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Herrick, S. B. et al. The acrosomal vesicle of mouse sperm is a calcium store. J. Cell. Physiol. 202, 663–671 (2005).

    CAS  PubMed  Google Scholar 

  66. Conner, S. J. et al. Understanding the physiology of pre-fertilisation events in the human spermatozoa – a necessary prerequisite to developing rational therapy. Reprod. 63, 237–256 (2007).

    CAS  Google Scholar 

  67. Teves, M. E. et al. Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil Steril. 86, 745–749 (2006).

    CAS  PubMed  Google Scholar 

  68. Harper, C. V. & Publicover, S. J. Reassessing the role of progesterone in fertilization — compartmentalized calcium signalling in human spermatozoa? Hum. Reprod. 20, 2675–2680 (2005).

    CAS  PubMed  Google Scholar 

  69. Jaiswal, B. S., Tur-Kaspa, I., Dor, J., Mashiach, S. & Eisenbach, M. Human sperm chemotaxis: is progesterone a chemoattractant? Biol. Reprod. 60, 1314–1319 (1999).

    CAS  PubMed  Google Scholar 

  70. Kumar, P. & Meizel, S. Nicotinic acetylcholine receptor subunits and associated proteins in human sperm. J. Biol. Chem. 280, 25928–25935 (2005).

    CAS  PubMed  Google Scholar 

  71. Dajas-Bailador, F. & Wonnacott, S. Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol. Sci. 25, 317–334 (2004).

    CAS  PubMed  Google Scholar 

  72. Bray, C., Son, J. H. & Meizel, S. Acetylcholine causes an increase of intracellular calcium in human sperm. Mol. Hum. Reprod. 11, 881–889 (2005).

    CAS  PubMed  Google Scholar 

  73. Bray, C., Son, J. H., Kumar, P. & Meizel, S. Mice deficient in CHRNA7, a subunit of the nicotinic acetylcholine receptor, produce sperm with impaired motility. Biol. Reprod. 73, 807–814 (2005).

    CAS  PubMed  Google Scholar 

  74. Patrat, C. et al. Zona pellucida from fertilised human oocytes induces a voltage-dependent calcium influx and the acrosome reaction in spermatozoa, but cannot be penetrated by sperm. BMC Dev. Biol. 6, 59 (2006).

    PubMed  PubMed Central  Google Scholar 

  75. Jungnickel, M. K., Marrero, H., Birnbaumer, L., Lemos, J. R. & Florman, H. M. Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nature Cell Biol. 3, 499–502 (2001).

    CAS  PubMed  Google Scholar 

  76. Leypold, B. G. et al. Altered sexual and social behaviors in trp2 mutant mice. Proc. Natl Acad. Sci. USA 99, 6376–6381 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Stowers, L., Holy, T. E., Meister, M., Dulac, C. & Koentges, G. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493–1500 (2002).

    CAS  PubMed  Google Scholar 

  78. Domino, S. E. & Garbers, D. L. The fucose-sulfate glycoconjugate that induces an acrosome reaction in spermatozoa stimulates inositol 1,4,5-trisphosphate accumulation. J. Biol. Chem. 263, 690–695 (1988).

    CAS  PubMed  Google Scholar 

  79. Gonzalez-Martinez, M. T. et al. A sustained increase in intracellular Ca2+ is required for the acrosome reaction in sea urchin sperm. Dev. Biol. 236, 220–229 (2001).

    CAS  PubMed  Google Scholar 

  80. Hirohashi, N. & Vacquier, V. D. Store-operated calcium channels trigger exocytosis of the sea urchin sperm acrosomal vesicle. Biochem. Biophys. Res. Commun. 304, 285–292 (2003).

    CAS  PubMed  Google Scholar 

  81. Travis, A. J. & Kopf, G. S. The role of cholesterol efflux in regulating the fertilization potential of mammalian spermatozoa. J. Clin. Invest. 110, 731–736 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nipper, R. W., Jones, B. H., Gerton, G. L. & Moss, S. B. Protein domains govern the intracellular distribution of mouse AKAP4. Biol. Reprod. 75, 189–196 (2006).

    CAS  PubMed  Google Scholar 

  83. Matzuk, M. M. & Lamb, D. J. Genetic dissection of mammalian fertility pathways. Nature Cell Biol. 4, S41–S49 (2002).

    PubMed  Google Scholar 

  84. Miyamoto, T. et al. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 362, 1714–1719 (2003).

    CAS  PubMed  Google Scholar 

  85. Baker, M. A., Witherdin, R., Hetherington, L., Cunningham-Smith, K. & Aitken, R. J. Identification of post-translational modifications that occur during sperm maturation using difference in two-dimensional gel electrophoresis. Proteomics 5, 1003–1012 (2005).

    CAS  PubMed  Google Scholar 

  86. Pixton, K. L. et al. Sperm proteome mapping of a patient who experienced failed fertilization at IVF reveals altered expression of at least 20 proteins compared with fertile donors: case report. Hum. Reprod. 19, 1438–1447 (2004).

    PubMed  Google Scholar 

  87. Johnston, D. S., Wooters, J., Kopf, G. S., Qiu, Y. & Roberts, K. P. Analysis of the human sperm proteome. Ann. N. Y. Acad. Sci. 1061, 190–202 (2005).

    CAS  PubMed  Google Scholar 

  88. Kim, K. S. & Gerton, G. L. Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse sperm. Dev. Biol. 264, 141–152 (2003).

    CAS  PubMed  Google Scholar 

  89. O'Toole, C. M., Arnoult, C., Darszon, A., Steinhardt, R. A. & Florman, H. M. Ca2+ entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction. Mol. Biol. Cell. 11, 1571–1584 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Harper, C. et al. Secretory pathway Ca2+-ATPase (SPCA1) Ca2+ pumps, not SERCAs, regulate complex [Ca2+]i signals in human spermatozoa. J. Cell Sci. 118, 1673–1685 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our thanks to B. Michell, S. Clarke and M. Publicover for their comments and suggestions on preliminary versions of this paper. We gratefully acknowledge financial support from the Wellcome Trust, Medical Research Council (MRC) and the Biotechnology and Biological Sciences Research Council (BBSRC).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Publicover, S., Harper, C. & Barratt, C. [Ca2+]i signalling in sperm — making the most of what you've got. Nat Cell Biol 9, 235–242 (2007). https://doi.org/10.1038/ncb0307-235

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0307-235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing