Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Genome-wide internal tagging of bacterial exported proteins

Abstract

As a result of the explosive growth of bacterial genomic and postgenomic information, there is a pressing need for efficient, inexpensive strategies for characterizing the in vivo behavior and function of newly identified gene products. We describe here an internal tagging procedure, based on transposon technology1,2, to facilitate the analysis of membrane-bound and secreted proteins in Gram-negative bacteria. The technique is based on a broad–host range transposon (ISphoA/hah), which may be used to generate both alkaline phosphatase (AP) gene fusions and 63-codon in-frame insertions in the genome. The 63-codon insertion encodes an influenza hemagglutinin epitope and a hexahistidine sequence, permitting sensitive detection and metal affinity purification of tagged proteins. For each gene targeted, it is thus possible to monitor the disruption of phenotype (using the transposon insertion), the gene's transcription and translation (using the AP reporter activity), and the behavior of the unfused protein (using the internal tag). Studies on a sequence-defined collection of Escherichia coli strains generated using the transposon showed that the synthesis and subcellular localization of tagged proteins could be readily monitored. The use of ISphoA/hah should provide a cost-effective approach for genome-wide in vivo studies of the behavior of exported proteins in a number of bacterial species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Function of ISphoA/hah.
Figure 2: Western blot of tagged proteins.
Figure 3: Fractionation of internally tagged proteins.

Similar content being viewed by others

References

  1. Judson, N. & Mekalanos, J.J. Transposon-based approaches to identify essential bacterial genes. Trends Microbiol. 8, 521–526 (2000).

    Article  CAS  Google Scholar 

  2. Berg, C. & Berg, D.E. in Mobile Genetic Elements (ed. Sheratt, D.J.) 38–68 (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  3. Kaufman, M.R. & Taylor, R.K. Identification of bacterial cell-surface virulence determinants with TnphoA. Methods Enzymol. 235, 426–448 (1994).

    Article  CAS  Google Scholar 

  4. Manoil, C., Mekalanos, J.J. & Beckwith, J. Alkaline phosphatase fusions: sensors of subcellular location. J. Bacteriol. 172, 515–518 (1990).

    Article  CAS  Google Scholar 

  5. Ehrmann, M., Bolek, P., Mondigler, M., Boyd, D. & Lange, R. TnTIN and TnTAP: mini-transposons for site-specific proteolysis in vivo. Proc. Natl. Acad. Sci. USA 94, 13111–13115 (1997).

    Article  CAS  Google Scholar 

  6. Manoil, C. & Bailey, J. A simple screen for permissive sites in proteins: analysis of Escherichia coli lac permease. J. Mol. Biol. 267, 250–263 (1997).

    Article  CAS  Google Scholar 

  7. Manoil, C. & Traxler, B. Insertion of in-frame sequence tags into proteins using transposons. Methods 20, 55–61 (2000).

    Article  CAS  Google Scholar 

  8. Hoekstra, M.F. et al. A Tn3 derivative that can be used to make short in-frame insertions within genes. Proc. Natl. Acad. Sci. USA 88, 5457–5461 (1991).

    Article  CAS  Google Scholar 

  9. Ross-Macdonald, P., Sheehan, A., Roeder, G.S. & Snyder, M. A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 190–195 (1997).

    Article  CAS  Google Scholar 

  10. Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999).

    Article  CAS  Google Scholar 

  11. Fritze, C.E. & Anderson, T.R. Epitope tagging: general method for tracking recombinant proteins. Methods Enzymol. 327, 3–16 (2000).

    Article  CAS  Google Scholar 

  12. Bornhorst, J.A. & Falke, J.J. Purification of proteins using polyhistidine affinity tags. Methods Enzymol. 326, 245–254 (2000).

    Article  CAS  Google Scholar 

  13. Britton, L. & Fridovich, I. Intracellular localization of the superoxide dismutases of Escherichia coli: a reevaluation. J. Bacteriol. 131, 815–820 (1977).

    Article  CAS  Google Scholar 

  14. Link, A.J., Robison, K. & Church, G.M. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis 18, 1259–1313 (1997).

    Article  CAS  Google Scholar 

  15. Nossal, N. & Heppel, L.A. The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J. Biol. Chem. 241, 3055–3062 (1966).

    CAS  PubMed  Google Scholar 

  16. Dean, D.A., Fikes, J.D., Gehring, K., Bassford, P.J. Jr. & Nikaido, H. Active transport of maltose in membrane vesicles obtained from Escherichia coli cells producing tethered maltose-binding protein. J. Bacteriol. 171, 503–510 (1989).

    Article  CAS  Google Scholar 

  17. Goryshin, I.Y., Jendrisak, J., Hoffman, L.M., Meis, R. & Reznikoff, W.S. Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat. Biotechnol. 18, 97–100 (2000).

    Article  CAS  Google Scholar 

  18. Herrero, M., de Lorenzo, V. & Timmis, K.N. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 172, 6557–6567 (1990).

    Article  CAS  Google Scholar 

  19. Manoil, C. Tagging exported proteins using Escherichia coli alkaline phosphatase gene fusions. Methods Enzymol. 326, 35–47 (2000).

    Article  CAS  Google Scholar 

  20. Manoil, C. & Beckwith, J. A genetic approach to analyzing membrane protein topology. Science 233, 1403–1408 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Traxler, W.S. Reznikoff, V. deLorenzo, I. Behlau, and A. Wright for discussions and plasmids, A. Alwood, I. Thaipisutikul, E. Round, T. Nguyen, A. Gerum, and Cold Spring Harbor Advanced Bacterial Genetics course participants for experimental contributions, and the National Science Foundation (MCB-9905048) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Manoil.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, J., Manoil, C. Genome-wide internal tagging of bacterial exported proteins. Nat Biotechnol 20, 839–842 (2002). https://doi.org/10.1038/nbt715

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt715

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing