Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis

Abstract

ATP-binding cassette (ABC) transporters, composed of importers and exporters, form one of the biggest protein superfamilies that transport a variety of substrates across the membrane, powered by ATP hydrolysis. Most ABC transporters are composed of two transmembrane domains and two cytoplasmic nucleotide-binding domains. Also, importers from prokaryotes usually have extra solute-binding proteins in the periplasm that are responsible for the binding of substrates1,2. Structures of importers have been reported that suggested a two-state model for the transport mechanism3,4,5,6,7,8,9,10,11. Energy-coupling factor (ECF) transporters belong to a new class of ATP-binding cassette importers. Each ECF transporter comprises an energy-coupling module consisting of a transmembrane T protein (EcfT), two nucleotide-binding proteins (EcfA and EcfA′), and another transmembrane substrate-specific binding S protein12,13,14 (EcfS). Despite the similarities with ABC transporters, ECF transporters have different organizational and functional properties. The lack of solute-binding proteins in ECF transporters differentiates them clearly from the canonical ABC importers15. Previously reported structures of the EcfS proteins RibU and ThiT clearly demonstrated the binding site of substrate riboflavin and thiamine, respectively16,17. However, the organization of the four different components and the transport mechanism of ECF transporters remain unknown. Here we present the structure of an intact folate ECF transporter from Lactobacillus brevis at a resolution of 3 Å. This structure was captured in an inward-facing, nucleotide-free conformation with no bound substrate. The folate-binding protein FolT is nearly parallel to the membrane and is bound almost entirely by EcfT, which adopts an L shape and connects to EcfA and EcfA′ through two coupling helices. Two conserved XRX motifs from the coupling helices of EcfT have a vital role in energy coupling by docking into EcfA–EcfA′. We propose a transport model that involves a substantial conformational change of FolT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of the folate ECF transporter.
Figure 2: Overall structures of different components.
Figure 3: The interactions between EcfT and FolT.
Figure 4: Structural basis for energy coupling.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Data deposits

The structure of the folate transporter has been deposited in the Protein Data Bank under the accession code 4HUQ.

References

  1. Higgins, C. F. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67–113 (1992)

    Article  CAS  Google Scholar 

  2. Rees, D. C. & Johnson, E. &. Lewinson, O. ABC transporters: the power to change. Nature Rev. Mol. Cell Biol. 10, 218–227 (2009)

    Article  CAS  Google Scholar 

  3. Locher, K. P., Lee, A. T. & Rees, D. C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Hvorup, R. N. et al. Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. Science 317, 1387–1390 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Hollenstein, K., Frei, D. C. & Locher, K. P. Structure of an ABC transporter in complex with its binding protein. Nature 446, 213–216 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L. & Chen, J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Oldham, M. L. &. Chen, J. Crystal structure of the maltose transporter in a pretranslocation intermediate state. Science 332, 1202–1205 (2011)

    Article  ADS  CAS  Google Scholar 

  8. Khare, D. Oldham, M. L., Orelle, C., Davidson, A. L. & Chen, J. Alternating access in maltose transporter mediated by rigid-body rotations. Mol. Cell 33, 528–536 (2009)

    Article  CAS  Google Scholar 

  9. Oldham, M. L. Davidson, A. L. & Chen, J. Structural insights into ABC transporter mechanism. Curr. Opin. Struct. Biol. 18, 726–733 (2008)

    Article  MathSciNet  CAS  Google Scholar 

  10. Kadaba, N. S., Kaiser, J. T., Johnson, E., Lee, A. & Rees, D. C. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science 321, 250–253 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Gerber, S., Comellas-Bigler, M., Goetz, B. A. & Locher, K. P. Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 321, 246–250 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Rodionov, D. A. et al. A novel class of modular transporters for vitamins in prokaryotes. J. Bacteriol. 191, 42–51 (2009)

    Article  CAS  Google Scholar 

  13. ter Beek, J., Duurkens, R. H., Erkens, G. B. & Slotboom, D. J. Quaternary structure and functional unit of energy coupling factor (ECF)-type transporters. J. Biol. Chem. 286, 5471–5475 (2011)

    Article  CAS  Google Scholar 

  14. Erkens, G. B., Majsnerowska, M., Ter Beek, J. & Slotboom, D. J. Energy coupling factor-type ABC transporters for vitamin uptake in prokaryotes. Biochemistry 51, 4390–4396 (2012)

    Article  CAS  Google Scholar 

  15. Eitinger, T., Rodionov, D. A., Grote, M. & Schneider, E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol. Rev. 35, 3–67 (2011)

    Article  CAS  Google Scholar 

  16. Zhang, P., Wang, J. & Shi, Y. Structure and mechanism of the S component of a bacterial ECF transporter. Nature 468, 717–720 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Erkens, G. B. et al. The structural basis of modularity in ECF-type ABC transporters. Nature Struct. Mol. Biol. 18, 755–760 (2011)

    Article  CAS  Google Scholar 

  18. Neubauer, O. et al. Two essential arginine residues in the T components of energy-coupling factor transporters. J. Bacteriol. 191, 6482–6488 (2009)

    Article  CAS  Google Scholar 

  19. Hebbeln, P., Rodionov, D. A., Alfandega, A. & Eitinger, T. Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module. Proc. Natl Acad. Sci. USA 104, 2909–2914 (2007)

    Article  ADS  Google Scholar 

  20. Duurkens, R. H., Tol, M. B., Geertsma, E. R., Permentier, H. P. & Slotboom, D. J. Flavin binding to the high affinity riboflavin transporter RibU. J. Biol. Chem. 282, 10380–10386 (2007)

    Article  CAS  Google Scholar 

  21. Berntsson, R. P. et al. Structural divergence of paralogous S components from ECF-type ABC transporters. Proc. Natl Acad. Sci. USA 109, 13990–13995 (2012)

    Article  ADS  CAS  Google Scholar 

  22. Eudes, A. et al. Identification of genes encoding the folate- and thiamine-binding membrane proteins in Firmicutes. J. Bacteriol. 190, 7591–7594 (2008)

    Article  CAS  Google Scholar 

  23. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. A 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  24. Sheldrick, G. M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D 66, 479–485 (2010)

    Article  CAS  Google Scholar 

  25. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  26. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  27. Geertsma, E. R. Nik Mahmood, N. A., Schuurman-Wolters, G. K. & Poolman, B. Membrane reconstitution of ABC transporters and assays of translocator function. Nature Protocols 3, 256–266 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank X. Chen and G. Zhao for reading the manuscript and the staff members of Shanghai Synchrotron Radiation Facility for technical assistance in data collection. This work was supported by grants from the Ministry of Science and Technology of China (2013CB127000), the Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences (2012OHTP, 2009CSP001, 2011KIP101, KSCX2-EW-J-12) and the Shanghai ‘Pujiang Talent’ programme (11PJ1411300).

Author information

Authors and Affiliations

Authors

Contributions

P.Z. initiated the project and designed the experiments; K.X., M.Z., Q.Z., F.Y., H.G. and P.Z. performed the bulk of the experiments; C.W. and F.H. contributed to some experiments and discussions; K.X., M.Z., Q.Z., F.Y. and J.D. contributed to data analysis and manuscript preparation; P.Z. wrote the manuscript.

Corresponding author

Correspondence to Peng Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1 and Supplementary Figures 1-11. (PDF 1428 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, K., Zhang, M., Zhao, Q. et al. Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis . Nature 497, 268–271 (2013). https://doi.org/10.1038/nature12046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12046

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing