Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP

Abstract

Swi2/Snf2-type ATPases regulate genome-associated processes such as transcription, replication and repair by catalysing the disruption, assembly or remodelling of nucleosomes or other protein–DNA complexes1,2. It has been suggested that ATP-driven motor activity along DNA disrupts target protein–DNA interactions in the remodelling reaction3,4,5. However, the complex and highly specific remodelling reactions are poorly understood, mostly because of a lack of high-resolution structural information about how remodellers bind to their substrate proteins. Mot1 (modifier of transcription 1 in Saccharomyces cerevisiae, denoted BTAF1 in humans) is a Swi2/Snf2 enzyme that specifically displaces the TATA box binding protein (TBP) from the promoter DNA and regulates transcription globally by generating a highly dynamic TBP pool in the cell6,7. As a Swi2/Snf2 enzyme that functions as a single polypeptide and interacts with a relatively simple substrate, Mot1 offers an ideal system from which to gain a better understanding of this important enzyme family. To reveal how Mot1 specifically disrupts TBP–DNA complexes, we combined crystal and electron microscopy structures of Mot1–TBP from Encephalitozoon cuniculi with biochemical studies. Here we show that Mot1 wraps around TBP and seems to act like a bottle opener: a spring-like array of 16 HEAT (huntingtin, elongation factor 3, protein phosphatase 2A and lipid kinase TOR) repeats grips the DNA-distal side of TBP via loop insertions, and the Swi2/Snf2 domain binds to upstream DNA, positioned to weaken the TBP–DNA interaction by DNA translocation. A ‘latch’ subsequently blocks the DNA-binding groove of TBP, acting as a chaperone to prevent DNA re-association and ensure efficient promoter clearance. This work shows how a remodelling enzyme can combine both motor and chaperone activities to achieve functional specificity using a conserved Swi2/Snf2 translocase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the EcMot1(NTD)–EcTBP structure.
Figure 2: Details of the interaction interfaces and latch function.
Figure 3: Three-dimensional reconstruction of the EcMot1–EcTBP complex and model of the EcMot1–EcTBP–DNA complex.
Figure 4: Proposed remodelling mechanism.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the reported crystal structures have been deposited with the Protein Data Bank under accession codes 3OCI (EcTBP) and 3OC3 (EcTBP–EcMot1(NTD) complex).

References

  1. Cairns, B. R. The logic of chromatin architecture and remodelling at promoters. Nature 461, 193–198 (2009)

    Article  ADS  CAS  Google Scholar 

  2. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007)

    Article  CAS  Google Scholar 

  3. Dürr, H., Korner, C., Muller, M., Hickmann, V. & Hopfner, K. P. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121, 363–373 (2005)

    Article  Google Scholar 

  4. Saha, A., Wittmeyer, J. & Cairns, B. R. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev. 16, 2120–2134 (2002)

    Article  CAS  Google Scholar 

  5. Racki, L. R. et al. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462, 1016–1021 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Auble, D. T. The dynamic personality of TATA-binding protein. Trends Biochem. Sci. 34, 49–52 (2009)

    Article  CAS  Google Scholar 

  7. de Graaf, P. et al. Chromatin interaction of TATA-binding protein is dynamically regulated in human cells. J. Cell Sci. 123, 2663–2671 (2010)

    Article  CAS  Google Scholar 

  8. Darst, R. P. et al. Mot1 regulates the DNA binding activity of free TATA-binding protein in an ATP-dependent manner. J. Biol. Chem. 278, 13216–13226 (2003)

    Article  CAS  Google Scholar 

  9. Pereira, L. A., van der Knaap, J. A., van den Boom, V., van den Heuvel, F. A. & Timmers, H. T. TAF(II)170 interacts with the concave surface of TATA-binding protein to inhibit its DNA binding activity. Mol. Cell. Biol. 21, 7523–7534 (2001)

    Article  CAS  Google Scholar 

  10. Pugh, B. F. Control of gene expression through regulation of the TATA-binding protein. Gene 255, 1–14 (2000)

    Article  CAS  Google Scholar 

  11. Auble, D. T. & Hahn, S. An ATP-dependent inhibitor of TBP binding to DNA. Genes Dev. 7, 844–856 (1993)

    Article  CAS  Google Scholar 

  12. Mohibullah, N. & Hahn, S. Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. Genes Dev. 22, 2994–3006 (2008)

    Article  CAS  Google Scholar 

  13. Pereira, L. A. et al. Molecular architecture of the basal transcription factor B-TFIID. J. Biol. Chem. 279, 21802–21807 (2004)

    Article  CAS  Google Scholar 

  14. Darst, R. P., Wang, D. & Auble, D. T. MOT1-catalyzed TBP–DNA disruption: uncoupling DNA conformational change and role of upstream DNA. EMBO J. 20, 2028–2040 (2001)

    Article  CAS  Google Scholar 

  15. Sprouse, R. O., Brenowitz, M. & Auble, D. T. Snf2/Swi2-related ATPase Mot1 drives displacement of TATA-binding protein by gripping DNA. EMBO J. 25, 1492–1504 (2006)

    Article  CAS  Google Scholar 

  16. Miller, G. & Hahn, S. A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex. Nature Struct. Biol. 13, 603–610 (2006)

    Article  CAS  Google Scholar 

  17. Gangaraju, V. K., Prasad, P., Srour, A., Kagalwala, M. N. & Bartholomew, B. Conformational changes associated with template commitment in ATP-dependent chromatin remodeling by ISW2. Mol. Cell 35, 58–69 (2009)

    Article  CAS  Google Scholar 

  18. Dasgupta, A., Darst, R. P., Martin, K. J., Afshari, C. A. & Auble, D. T. Mot1 activates and represses transcription by direct, ATPase-dependent mechanisms. Proc. Natl Acad. Sci. USA 99, 2666–2671 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Klejman, M. P. et al. NC2α interacts with BTAF1 and stimulates its ATP-dependent association with TATA-binding protein. Mol. Cell. Biol. 24, 10072–10082 (2004)

    Article  CAS  Google Scholar 

  20. van Werven, F. J. et al. Cooperative action of NC2 and Mot1p to regulate TATA-binding protein function across the genome. Genes Dev. 22, 2359–2369 (2008)

    Article  CAS  Google Scholar 

  21. Hsu, J. Y. et al. TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription. Genes Dev. 22, 2353–2358 (2008)

    Article  CAS  Google Scholar 

  22. Geisberg, J. V. & Struhl, K. Cellular stress alters the transcriptional properties of promoter-bound Mot1-TBP complexes. Mol. Cell 14, 479–489 (2004)

    Article  CAS  Google Scholar 

  23. Kostrewa, D. et al. RNA polymerase II–TFIIB structure and mechanism of transcription initiation. Nature 462, 323–330 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Liu, X., Bushnell, D. A., Wang, D., Calero, G. & Kornberg, R. D. Structure of an RNA polymerase II–TFIIB complex and the transcription initiation mechanism. Science 327, 206–209 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Schluesche, P., Stelzer, G., Piaia, E., Lamb, D. C. & Meisterernst, M. NC2 mobilizes TBP on core promoter TATA boxes. Nature Struct. Biol. 14, 1196–1201 (2007)

    Article  CAS  Google Scholar 

  26. Timmers, H. T., Meyers, R. E. & Sharp, P. A. Composition of transcription factor B-TFIID. Proc. Natl Acad. Sci. USA 89, 8140–8144 (1992)

    Article  ADS  CAS  Google Scholar 

  27. Poon, D., Campbell, A. M., Bai, Y. & Weil, P. A. Yeast Taf170 is encoded by MOT1 and exists in a TATA box-binding protein (TBP)-TBP-associated factor complex distinct from transcription factor IID. J. Biol. Chem. 269, 23135–23140 (1994)

    CAS  PubMed  Google Scholar 

  28. Gkikopoulos, T., Havas, K. M., Dewar, H. & Owen-Hughes, T. SWI/SNF and Asf1p cooperate to displace histones during induction of the Saccharomyces cerevisiae HO promoter. Mol. Cell. Biol. 29, 4057–4066 (2009)

    Article  CAS  Google Scholar 

  29. Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993)

    Article  ADS  CAS  Google Scholar 

  30. Auble, D. T., Wang, D., Post, K. W. & Hahn, S. Molecular analysis of the SNF2/SWI2 protein family member MOT1, an ATP-driven enzyme that dissociates TATA-binding protein from DNA. Mol. Cell. Biol. 17, 4842–4851 (1997)

    Article  CAS  Google Scholar 

  31. Berger, I., Fitzgerald, D. J. & Richmond, T. J. Baculovirus expression system for heterologous multiprotein complexes. Nature Biotechnol. 22, 1583–1587 (2004)

    Article  CAS  Google Scholar 

  32. Kagawa, R., Montgomery, M. G., Braig, K., Leslie, A. G. & Walker, J. E. The structure of bovine F1-ATPase inhibited by ADP and beryllium fluoride. EMBO J. 23, 2734–2744 (2004)

    Article  CAS  Google Scholar 

  33. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  34. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  35. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D 59, 2023–2030 (2003)

    Article  CAS  Google Scholar 

  36. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D 62, 1002–1011 (2006)

    Article  Google Scholar 

  37. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  38. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  39. DeLano, W. L. The PyMOL Molecular Graphics System Version 1.3 r1 (Schrödinger, 2010).

  40. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004)

    Article  CAS  Google Scholar 

  41. Sprouse, R. O., Brenowitz, M. & Auble, D. T. Snf2/Swi2-related ATPase Mot1 drives displacement of TATA-binding protein by gripping DNA. EMBO J. 25, 1492–1504 (2006)

    Article  CAS  Google Scholar 

  42. Darst, R. P., Wang, D. & Auble, D. T. MOT1-catalyzed TBP-DNA disruption: uncoupling DNA conformational change and role of upstream DNA. EMBO J. 20, 2028–2040 (2001)

    Article  CAS  Google Scholar 

  43. Chen, H. T. & Hahn, S. Binding of TFIIB to RNA polymerase II: Mapping the binding site for the TFIIB zinc ribbon domain within the preinitiation complex. Mol. Cell 12, 437–447 (2003)

    Article  CAS  Google Scholar 

  44. Miller, G. & Hahn, S. A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex. Nature Struct. Mol. Biol. 13, 603–610 (2006)

    Article  CAS  Google Scholar 

  45. Auble, D. T., Wang, D., Post, K. W. & Hahn, S. Molecular analysis of the SNF2/SWI2 protein family member MOT1, an ATP-driven enzyme that dissociates TATA-binding protein from DNA. Mol. Cell. Biol. 17, 4842–4851 (1997)

    Article  CAS  Google Scholar 

  46. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)

    Article  CAS  Google Scholar 

  47. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996)

    Article  CAS  Google Scholar 

  48. Trabuco, L. G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Max-Planck Crystallization Facility Martinsried. We thank M. Lucas, A. Schele, C. Ungewickell, J. Goetzl and Y. Hiruma for help with experimentation. We thank J.-P. Armache and M. Turk for help with electron microscopy data. We are grateful to G. Miller and S. Hahn for advice. We thank the staff at the SLS and ESRF for help with data collection. We thank P. Cramer and members of the Hopfner and Auble laboratories for discussions and comments on the manuscript. This work was supported by the German Research Council (SFB 646 and SFB/TR5) and Excellence Initiative (Center for Integrated Protein Science, Munich) to K.-P.H. and R.B., by DFG grant WE4628/1 to P.Wendler and by NIH grant GM55763 to D.T.A.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and M.M. cloned, purified and crystallized EcTBP; S.C. solved its structure. S.C., A.B., M.M. and P.Wollmann cloned, purified and crystallized EcTBP–EcMot1(NTD); P.Wollmann collected data and P.Wollmann, G.W. and K.-P.H. solved the complex structures. R.V. performed FeBABE experiments, M.N.W. conducted yeast molecular biological manipulations and D.T.A. performed gelshifts. P.Wendler, O.B. and R.B. performed and interpreted electron microscopy experiments. P.Wollmann, P.Wendler, R.B., D.T.A. and K.-P.H. planned and interpreted the experiments. D.T.A. and K.-P.H. wrote the manuscript and all authors provided editorial input.

Corresponding authors

Correspondence to David T. Auble or Karl-Peter Hopfner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-8 with legends, Supplementary Tables 1-3 and additional references. (PDF 6129 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wollmann, P., Cui, S., Viswanathan, R. et al. Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP. Nature 475, 403–407 (2011). https://doi.org/10.1038/nature10215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10215

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing