Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT

Abstract

Transport of solutes across biological membranes is performed by specialized secondary transport proteins in the lipid bilayer1, and is essential for life. Here we report the structures of the sodium-independent carnitine/butyrobetaine antiporter CaiT from Proteus mirabilis (PmCaiT) at 2.3-Å and from Escherichia coli (EcCaiT) at 3.5-Å resolution. CaiT belongs to the family of betaine/carnitine/choline transporters (BCCT), which are mostly Na+ or H+ dependent, whereas EcCaiT is Na+ and H+ independent2. The three-dimensional architecture of CaiT resembles that of the Na+-dependent transporters LeuT3 and BetP4, but in CaiT a methionine sulphur takes the place of the Na+ ion to coordinate the substrate in the central transport site, accounting for Na+-independent transport. Both CaiT structures show the fully open, inward-facing conformation, and thus complete the set of functional states that describe the alternating access mechanism5. EcCaiT contains two bound butyrobetaine substrate molecules, one in the central transport site, the other in an extracellular binding pocket. In the structure of PmCaiT, a tryptophan side chain occupies the transport site, and access to the extracellular site is blocked. Binding of both substrates to CaiT reconstituted into proteoliposomes is cooperative, with Hill coefficients up to 1.7, indicating that the extracellular site is regulatory. We propose a mechanism whereby the occupied regulatory site increases the binding affinity of the transport site and initiates substrate translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CaiT structure and bound substrates.
Figure 2: Hydrogen bond networks in PmCaiT.
Figure 3: Substrate transport and binding in CaiT.
Figure 4: Proposed mechanism of cooperative transport.

Similar content being viewed by others

Accession codes

Data deposits

Coordinates and structure factors for P. mirabilis CaiT and E. coli CaiT with bound substrate are deposited in the Protein Data Bank under accession numbers 2WSW and 2WSX, respectively..

References

  1. Csaky, T. Z. Transport through biological membranes. Annu. Rev. Physiol. 27, 415–450 (1965)

    Article  CAS  PubMed  Google Scholar 

  2. Jung, H. et al. CaiT of Escherichia coli, a new transporter catalyzing l-carnitine/γ-butyrobetaine exchange. J. Biol. Chem. 277, 39251–39258 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ressl, S., Terwisscha van Scheltinga, A. C., Vonrhein, C., Ott, V. & Ziegler, C. Molecular basis of transport and regulation in the Na+/betaine symporter BetP. Nature 458, 47–52 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Diallinas, G. Biochemistry. An almost-complete movie. Science 322, 1644–1645 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. Vinothkumar, K. R., Raunser, S., Jung, H. & Kühlbrandt, W. Oligomeric structure of the carnitine transporter CaiT from Escherichia coli . J Biol Chem 281, 4795–4801 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. Horn, C. et al. Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. J. Mol. Biol. 357, 592–606 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. Padgett, C. L., Hanek, A. P., Lester, H. A., Dougherty, D. A. & Lummis, S. C. Unnatural amino acid mutagenesis of the GABAA receptor binding site residues reveals a novel cation–pi interaction between GABA and β2Tyr97. J. Neurosci. 27, 886–892 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schiefner, A. et al. Cation–pi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli . J. Biol. Chem. 279, 5588–5596 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Torrice, M. M., Bower, K. S., Lester, H. A. & Dougherty, D. A. Probing the role of the cation–pi interaction in the binding sites of GPCRs using unnatural amino acids. Proc. Natl Acad. Sci. USA 106, 11919–11924 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shaffer, P. L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+ independent amino acid transporter. Science 325, 1010–1014 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi, L., Quick, M., Zhao, Y., Weinstein, H. & Javitch, J. A. The mechanism of a neurotransmitter: sodium symporter—inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol. Cell 30, 667–677 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Farwick, M., Siewe, R. M. & Kramer, R. Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum . J. Bacteriol. 177, 4690–4695 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weyand, S. et al. Structure and molecular mechanism of a nucleobase–cation–symport-1 family transporter. Science 322, 709–713 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ricard, J. & Cornish-Bowden, A. Co-operative and allosteric enzymes: 20 years on. Eur. J. Biochem. 166, 255–272 (1987)

    Article  CAS  PubMed  Google Scholar 

  16. Barros, T., Royant, A., Standfuss, J., Dreuw, A. & Kuhlbrandt, W. Crystal structure of plant light-harvesting complex shows the active, energy-transmitting state. EMBO J. 28, 298–306 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321, 810–814 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, X. et al. Structure and mechanism of an amino acid antiporter. Science 324, 1565–1568 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Sevilla, A. et al. Design of metabolic engineering strategies for maximizing l-(−)-carnitine production by Escherichia coli. Integration of the metabolic and bioreactor levels. Biotechnol. Prog. 21, 329–337 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. Fang, Y. et al. Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460, 1040–1043 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang, L., Bai, L., Wang, W. H. & Jiang, T. Crystal structure of the carnitine transporter and insights into the antiport mechanism. Nature Struct. Mol. Biol. 17, 492–496 (2010)

    Article  CAS  Google Scholar 

  22. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  23. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006)

    Article  PubMed  Google Scholar 

  24. The. CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  25. Rossmann, M. G. & Blow, D. M. The detection of sub-units within the crystallographic asymmetric unit. Acta Crystallogr. 15, 24–31 (1962)

    Article  CAS  Google Scholar 

  26. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  27. Terwilliger, T. C. Using prime-and-switch phasing to reduce model bias in molecular replacement. Acta Crystallogr. D 60, 2144–2149 (2004)

    Article  PubMed  Google Scholar 

  28. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  30. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

  31. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  PubMed  Google Scholar 

  32. Fenn, T. D., Ringe, D. & Petsko, G. A. POVScript+: a program for model and data visualization using persistence of vision ray-tracing. J. Appl. Cryst. 36, 944–947 (2003)

    Article  CAS  Google Scholar 

  33. DeLano, W. L. The PyMOL molecular graphics system. (DeLano Scientific, San Carlos, CA, USA). (2002)

  34. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D 60, 2256–2268 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  CAS  PubMed  Google Scholar 

  36. Holm, L. & Sander, C. Mapping the protein universe. Science 273, 595–603 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ö. Yildiz, T. Barros and R. Wouts for help with computing; S. Ressl for providing the BetP model; K. R Vinothkumar for growing the first crystals of CaiT, J. Hakulinen; F. Joos for help with transport measurements; H. Jung and K. Fendler for discussions; and C. Ziegler and L. Forrest for reading the manuscript. The γ-butyrobetaine used for binding studies was a gift from Lonza (Switzerland). We also thank A. Pauluhn and the X10SA beamline staff at the Swiss Light Source, and the beamline staff at the European Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were performed by S.S. and U.G.; cloning and mutagenesis was performed by S.K. Crystals were grown by S.S., diffraction data were collected and processed by S.S. and A.C.T.v.S., and the structures were analysed by S.S., A.C.T.v.S. and W.K. S.S. and W.K. wrote the manuscript.

Corresponding author

Correspondence to Werner Kühlbrandt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Background Notes, Supplementary Tables 1- 4, Supplementary Figures 1- 9 with legends and additional references. (PDF 22457 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, S., Köster, S., Geldmacher, U. et al. Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT. Nature 467, 233–236 (2010). https://doi.org/10.1038/nature09310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09310

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing