Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats

Abstract

Broken chromosomes arising from DNA double-strand breaks result from endogenous events such as the production of reactive oxygen species during cellular metabolism, as well as from exogenous sources such as ionizing radiation1,2,3. Left unrepaired or incorrectly repaired they can lead to genomic changes that may result in cell death or cancer. DNA-dependent protein kinase (DNA-PK), a holoenzyme that comprises the DNA-PK catalytic subunit (DNA-PKcs)4,5 and the heterodimer Ku70/Ku80, has a major role in non-homologous end joining—the main pathway in mammals used to repair double-strand breaks6,7,8. DNA-PKcs is a serine/threonine protein kinase comprising a single polypeptide chain of 4,128 amino acids and belonging to the phosphatidylinositol-3-OH kinase (PI(3)K)-related protein family9. DNA-PKcs is involved in the sensing and transmission of DNA damage signals to proteins such as p53, setting off events that lead to cell cycle arrest10,11. It phosphorylates a wide range of substrates in vitro, including Ku70/Ku80, which is translocated along DNA12. Here we present the crystal structure of human DNA-PKcs at 6.6 Å resolution, in which the overall fold is clearly visible, to our knowledge, for the first time. The many α-helical HEAT repeats (helix–turn–helix motifs) facilitate bending and allow the polypeptide chain to fold into a hollow circular structure. The carboxy-terminal kinase domain is located on top of this structure, and a small HEAT repeat domain that probably binds DNA is inside. The structure provides a flexible cradle to promote DNA double-strand-break repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of DNA-PKcs at 6.6 Å resolution.
Figure 2: Overall view of the DNA-PKcs structure.
Figure 3: Location of the DNA-PKcs kinase domain.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates and structure factors for the reported crystal structure have been deposited with the Protein Data Bank (PDB) under accession code 3kgv.

References

  1. Kemp, L. M., Sedgwick, S. G. & Jeggo, P. A. X-ray sensitive mutants of Chinese hamster ovary cells defective in double-strand break rejoining. Mutat. Res. 132, 189–196 (1984)

    CAS  PubMed  Google Scholar 

  2. Zdzienicka, M. Z., Tran, Q., van der Schans, G. P. & Simons, J. W. I. Characterization of an X-ray-hypersensitive mutant of V79 Chinese hamster cells. Mutat. Res. 194, 239–249 (1988)

    CAS  PubMed  Google Scholar 

  3. Biedermann, K. A., Sun, J., Giaccia, A. J., Tosto, L. M. & Brown, J. M. Scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc. Natl Acad. Sci. USA 88, 1394–1397 (1991)

    Article  ADS  CAS  Google Scholar 

  4. Dvir, A., Stein, L. Y., Calore, B. L. & Dynan, W. S. Purification and characterization of a template associated protein kinase that phosphorylates RNA polymerase II. J. Biol. Chem. 268, 10440–10447 (1993)

    CAS  PubMed  Google Scholar 

  5. Carter, T., Vancurová, I., Sun, I., Lou, W. & DeLeon, S. A DNA-activated protein kinase from HeLa cell nuclei. Mol. Cell. Biol. 10, 6460–6471 (1990)

    Article  CAS  Google Scholar 

  6. Critchlow, S. E. & Jackson, S. P. DNA end-joining: from yeast to man. Trends Biochem. Sci. 23, 394–398 (1998)

    Article  CAS  Google Scholar 

  7. Gottlieb, T. M. & Jackson, S. P. The DNA-dependent protein kinase requirement for DNA ends and association with Ku antigen. Cell 72, 131–142 (1993)

    Article  CAS  Google Scholar 

  8. Ma, Y., Pannicke, U., Schwarz, K. & Lieber, M. R. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108, 781–794 (2002)

    Article  CAS  Google Scholar 

  9. Hartley, K. O. et al. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82, 849–856 (1995)

    Article  CAS  Google Scholar 

  10. Hoekstra, M. F. Responses to DNA damage and regulation of cell cycle checkpoints by the ATM protein kinase family. Curr. Opin. Genet. Dev. 7, 170–175 (1997)

    Article  CAS  Google Scholar 

  11. Anderson, C. W. DNA damage and the DNA-activated protein kinase. Trends Biochem. Sci. 18, 433–437 (1993)

    Article  CAS  Google Scholar 

  12. Yoo, S. & Dynan, W. S. Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic Acids Res. 27, 4679–4686 (1999)

    Article  CAS  Google Scholar 

  13. Harris, R. et al. The 3D solution structure of the C-terminal region of Ku86 (Ku86CTR). J. Mol. Biol. 335, 573–582 (2004)

    Article  CAS  Google Scholar 

  14. Zhang, Z. et al. Solution structure of the C-terminal domain of Ku80 suggests important sites for protein–protein interactions. Structure 12, 495–502 (2004)

    Article  CAS  Google Scholar 

  15. Chiu, C. Y., Cary, R. B., Chen, D. J., Peterson, S. R. & Stewart, P. L. Cryo-EM imaging of the catalytic subunit of the DNA-dependent protein kinase. J. Mol. Biol. 284, 1075–1081 (1998)

    Article  CAS  Google Scholar 

  16. Boskovic, J. et al. Visualization of DNA-induced conformational changes in the DNA repair kinase DNA-PKcs. EMBO J. 22, 5875–5882 (2003)

    Article  CAS  Google Scholar 

  17. Rivera-Calzada, A., Maman, J. P., Spagnolo, L., Pearl, L. H. & Llorca, O. Three-dimensional structure and regulation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Structure 13, 243–255 (2005)

    Article  CAS  Google Scholar 

  18. Williams, D. R., Lee, K.-J., Shi, J., Chen, D. J. & Stewart, P. L. Cryo-EM structure of the DNA-dependent protein kinase catalytic subunit at subnanometer resolution reveals α-helices and insight into DNA binding. Structure 16, 468–477 (2008)

    Article  CAS  Google Scholar 

  19. Groves, M. R., Hanlon, N., Turowski, P., Hemmings, B. A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99–110 (1999)

    Article  CAS  Google Scholar 

  20. Cingolani, G., Petosa, C., Weis, K. & Müller, C. W. Structure of importin-β bound to the IBB domain of importin-α. Nature 399, 221–229 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Goldenberg, S. J. et al. Structure of the Cand1–Cul1–Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119, 517–528 (2004)

    Article  CAS  Google Scholar 

  22. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  23. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  24. Spagnolo, L., Rivera-Calzada, A., Pearl, L. H. & Llorca, O. Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair. Mol. Cell 22, 511–519 (2006)

    Article  CAS  Google Scholar 

  25. Meek, K., Douglas, P., Cui, X., Ding, Q. & Lees-Miller, S. P. trans autophosphorylation at DNA-dependent protein kinase’s two major autophosphorylation site clusters facilitates end processing but not end joining. Mol. Cell. Biol. 27, 3881–3890 (2007)

    Article  CAS  Google Scholar 

  26. Yaneva, M., Kowalewski, T. & Lieber, M. R. Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic force microscopy studies. EMBO J. 16, 5098–5112 (1997)

    Article  CAS  Google Scholar 

  27. Walker, E. H., Perisic, O., Ried, C., Stephens, L. & Williams, R. L. Structural insights into phosphoinositide 3-kinase catalysis and signaling. Nature 402, 313–320 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Bosotti, R., Isacchi, A. & Sonnhammer, E. L. L. FAT: a novel domain in PIK-related kinases. Trends Biochem. Sci. 25, 225–227 (2000)

    Article  CAS  Google Scholar 

  29. Dames, S. A., Mulet, J. M., Rathgeb-Szabo, K., Hall, M. N. & Grzesiek, S. The solution structure of the FATC Domain of the protein kinase TOR suggests a role for redox-dependent structural and cellular stability. J. Biol. Chem. 280, 20558–20564 (2005)

    Article  CAS  Google Scholar 

  30. Leuther, K. K., Hammarsten, O., Kornberg, R. D. & Chu, G. Structure of DNA-dependent protein kinase: implications for its regulation by DNA. EMBO J. 18, 1114–1123 (1999)

    Article  CAS  Google Scholar 

  31. Gell, D. & Jackson, S. P. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res. 27, 3494–3502 (1999)

    Article  CAS  Google Scholar 

  32. Ausubel, F. M. et al. in Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology 5th edn 12.3–12.6 (Wiley, 2002)

    Google Scholar 

  33. Schneider, G. & Lindqvist, Y. Ta6Brl4 is a useful cluster compound for isomorphous replacement in protein crystallography. Acta Crystallogr. D 50, 186–191 (1994)

    Article  CAS  Google Scholar 

  34. Leonard, G. A. et al. Online collection and analysis of X-ray fluorescence spectra on the macromolecular crystallography beamlines of the ESRF. J. Appl. Crystallogr. 42, 333–335 (2009)

    Article  CAS  Google Scholar 

  35. Leslie, A. G. W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 and ESF-EAMCB Newsletter on Protein Crystallography no. 26, (1992)

    Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  37. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  38. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  39. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D 59, 2023–2030 (2003)

    Article  CAS  Google Scholar 

  40. Kleywegt, G. J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr. D 52, 842–857 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank G. Smith for providing pure DNA-PKcs that was used in the initial experiments as a marker and also for providing the DNA-PKcs and Ku70 antibodies, L. Pellegrini for help and advice at the beginning of the project, and S. Jackson for discussions. We are also grateful to R. Peat for preparing HeLa cells, L. Packman for help in identifying DNA-PKcs in polyacrylamide gels, N. Ban for providing Ta6Br122+ and C. Müller-Dieckmann at the ESRF for support during the diffraction data collection experiments. This work was funded by the Wellcome Trust and CR-UK.

Author Contributions T.L.B. and B.L.S. conceived the project. B.L.S. characterized, purified, crystallized and analysed the electron density for the DNA-PKcs–Ku80ct complex. D.Y.C. and B.L.S. carried out data collection and structure modelling. D.Y.C. carried out data processing, electron density calculations and refinement, with significant input from T.L.B. in the interpretation of the data. B.L.S. wrote the paper and all authors contributed and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bancinyane L. Sibanda or Dimitri Y. Chirgadze.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1, Supplementary Figures 1-3 with Legends and a Legend for Supplementary Movie 1. (PDF 1711 kb)

Supplementary Information

This movie shows the 360 degrees view of a single DNA-PKcs molecule displayed as molecular surface (see Supplementary Information file for full Legend). (MOV 7455 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibanda, B., Chirgadze, D. & Blundell, T. Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature 463, 118–121 (2010). https://doi.org/10.1038/nature08648

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08648

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing