Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

The role of Smad signaling in hematopoiesis and translational hematology

Abstract

Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) of adult individuals and function to produce and regenerate the entire blood and immune system over the course of an individual's lifetime. Historically, HSCs are among the most thoroughly characterized tissue-specific stem cells. Despite this, the regulation of fate options, such as self-renewal and differentiation, has remained elusive, partly because of the expansive plethora of factors and signaling cues that govern HSC behavior in vivo. In the BM, HSCs are housed in specialized niches that dovetail the behavior of HSCs with the need of the organism. The Smad-signaling pathway, which operates downstream of the transforming growth factor-β (TGF-β) superfamily of ligands, regulates a diverse set of biological processes, including proliferation, differentiation and apoptosis, in many different organ systems. Much of the function of Smad signaling in hematopoiesis has remained nebulous due to early embryonic lethality of most knockout mouse models. However, recently new data have been uncovered, suggesting that the Smad-signaling circuitry is intimately linked to HSC regulation. In this review, we bring the Smad-signaling pathway into focus, chronicling key concepts and recent advances with respect to TGF-β-superfamily signaling in normal and leukemic hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Massague J . TGF-beta signal transduction. Annu Rev Biochem 1998; 67: 753–791.

    CAS  PubMed  Google Scholar 

  2. Gordon KJ, Blobe GC . Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta 2008; 1782: 197–228.

    CAS  PubMed  Google Scholar 

  3. Massague J . TGFbeta in cancer. Cell 2008; 134: 215–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fortunel NO, Hatzfeld A, Hatzfeld JA . Transforming growth factor-beta: pleiotropic role in the regulation of hematopoiesis. Blood 2000; 96: 2022–2036.

    CAS  PubMed  Google Scholar 

  5. Larsson J, Karlsson S . The role of Smad signaling in hematopoiesis. Oncogene 2005; 24: 5676–5692.

    CAS  PubMed  Google Scholar 

  6. Ruscetti FW, Akel S, Bartelmez SH . Autocrine transforming growth factor-beta regulation of hematopoiesis: many outcomes that depend on the context. Oncogene 2005; 24: 5751–5763.

    CAS  PubMed  Google Scholar 

  7. Massague J, Seoane J, Wotton D . Smad transcription factors. Genes Dev 2005; 19: 2783–2810.

    CAS  PubMed  Google Scholar 

  8. Heldin CH, Miyazono K, ten Dijke P . TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390: 465–471.

    CAS  PubMed  Google Scholar 

  9. Garbe A, Spyridonidis A, Mobest D, Schmoor C, Mertelsmann R, Henschler R . Transforming growth factor-beta 1 delays formation of granulocyte-macrophage colony-forming cells, but spares more primitive progenitors during ex vivo expansion of CD34+ haemopoietic progenitor cells. Br J Haematol 1997; 99: 951–958.

    CAS  PubMed  Google Scholar 

  10. Batard P, Monier MN, Fortunel N, Ducos K, Sansilvestri-Morel P, Phan T et al. TGF-(beta)1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. J Cell Sci 2000; 113 (Part 3): 383–390.

    CAS  PubMed  Google Scholar 

  11. Sitnicka E, Ruscetti FW, Priestley GV, Wolf NS, Bartelmez SH . Transforming growth factor beta 1 directly and reversibly inhibits the initial cell divisions of long-term repopulating hematopoietic stem cells. Blood 1996; 88: 82–88.

    CAS  PubMed  Google Scholar 

  12. Soma T, Yu JM, Dunbar CE . Maintenance of murine long-term repopulating stem cells in ex vivo culture is affected by modulation of transforming growth factor-beta but not macrophage inflammatory protein-1 alpha activities. Blood 1996; 87: 4561–4567.

    CAS  PubMed  Google Scholar 

  13. Fortunel N, Batard P, Hatzfeld A, Monier MN, Panterne B, Lebkowski J et al. High proliferative potential-quiescent cells: a working model to study primitive quiescent hematopoietic cells. J Cell Sci 1998; 111 (Part 13): 1867–1875.

    CAS  PubMed  Google Scholar 

  14. Hatzfeld J, Li ML, Brown EL, Sookdeo H, Levesque JP, O′Toole T et al. Release of early human hematopoietic progenitors from quiescence by antisense transforming growth factor beta 1 or Rb oligonucleotides. J Exp Med 1991; 174: 925–929.

    CAS  PubMed  Google Scholar 

  15. Dao MA, Hwa J, Nolta JA . Molecular mechanism of transforming growth factor beta-mediated cell-cycle modulation in primary human CD34(+) progenitors. Blood 2002; 99: 499–506.

    CAS  PubMed  Google Scholar 

  16. Dao MA, Taylor N, Nolta JA . Reduction in levels of the cyclin-dependent kinase inhibitor p27(kip-1) coupled with transforming growth factor beta neutralization induces cell-cycle entry and increases retroviral transduction of primitive human hematopoietic cells. Proc Natl Acad Sci USA 1998; 95: 13006–13011.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dubois CM, Ruscetti FW, Palaszynski EW, Falk LA, Oppenheim JJ, Keller JR . Transforming growth factor beta is a potent inhibitor of interleukin 1 (IL-1) receptor expression: proposed mechanism of inhibition of IL-1 action. J Exp Med 1990; 172: 737–744.

    CAS  PubMed  Google Scholar 

  18. Dubois CM, Ruscetti FW, Stankova J, Keller JR . Transforming growth factor-beta regulates c-kit message stability and cell-surface protein expression in hematopoietic progenitors. Blood 1994; 83: 3138–3145.

    CAS  PubMed  Google Scholar 

  19. Ducos K, Panterne B, Fortunel N, Hatzfeld A, Monier MN, Hatzfeld J . p21(cip1) mRNA is controlled by endogenous transforming growth factor-beta1 in quiescent human hematopoietic stem/progenitor cells. J Cell Physiol 2000; 184: 80–85.

    CAS  PubMed  Google Scholar 

  20. Jacobsen SE, Ruscetti FW, Dubois CM, Lee J, Boone TC, Keller JR . Transforming growth factor-beta trans-modulates the expression of colony stimulating factor receptors on murine hematopoietic progenitor cell lines. Blood 1991; 77: 1706–1716.

    CAS  PubMed  Google Scholar 

  21. Sansilvestri P, Cardoso AA, Batard P, Panterne B, Hatzfeld A, Lim B et al. Early CD34high cells can be separated into KIThigh cells in which transforming growth factor-beta (TGF-beta) downmodulates c-kit and KITlow cells in which anti-TGF-beta upmodulates c-kit. Blood 1995; 86: 1729–1735.

    CAS  PubMed  Google Scholar 

  22. Cheng T, Shen H, Rodrigues N, Stier S, Scadden DT . Transforming growth factor beta 1 mediates cell-cycle arrest of primitive hematopoietic cells independent of p21(Cip1/Waf1) or p27(Kip1). Blood 2001; 98: 3643–3649.

    CAS  PubMed  Google Scholar 

  23. Scandura JM, Boccuni P, Massague J, Nimer SD . Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci USA 2004; 101: 15231–15236.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamazaki S, Iwama A, Takayanagi S, Morita Y, Eto K, Ema H et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J 2006; 25: 3515–3523.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamazaki S, Iwama A, Takayanagi S, Eto K, Ema H, Nakauchi H . TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 2009; 113: 1250–1256.

    CAS  PubMed  Google Scholar 

  26. Shi Y, Massague J . Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113: 685–700.

    Article  CAS  PubMed  Google Scholar 

  27. Piek E, Heldin CH, Ten Dijke P . Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 1999; 13: 2105–2124.

    CAS  PubMed  Google Scholar 

  28. Langer JC, Henckaerts E, Orenstein J, Snoeck HW . Quantitative trait analysis reveals transforming growth factor-beta2 as a positive regulator of early hematopoietic progenitor and stem cell function. J Exp Med 2004; 199: 5–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Henckaerts E, Langer JC, Orenstein J, Snoeck HW . The positive regulatory effect of TGF-beta2 on primitive murine hemopoietic stem and progenitor cells is dependent on age, genetic background, and serum factors. J Immunol 2004; 173: 2486–2493.

    CAS  PubMed  Google Scholar 

  30. Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M, Lyons K et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 2007; 1: 218–229.

    CAS  PubMed  Google Scholar 

  31. Sieburg HB, Cho RH, Dykstra B, Uchida N, Eaves CJ, Muller-Sieburg CE . The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 2006; 107: 2311–2316.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 135: 1118–1129.

    CAS  PubMed  Google Scholar 

  33. Challen GA, Boles NC, Chambers SM, Goodell MA . Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 2010; 6: 265–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yaswen L, Kulkarni AB, Fredrickson T, Mittleman B, Schiffman R, Payne S et al. Autoimmune manifestations in the transforming growth factor-beta 1 knockout mouse. Blood 1996; 87: 1439–1445.

    CAS  PubMed  Google Scholar 

  35. Letterio JJ, Geiser AG, Kulkarni AB, Dang H, Kong L, Nakabayashi T et al. Autoimmunity associated with TGF-beta1-deficiency in mice is dependent on MHC class II antigen expression. J Clin Invest 1996; 98: 2109–2119.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Leveen P, Larsson J, Ehinger M, Cilio CM, Sundler M, Sjostrand LJ et al. Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood 2002; 100: 560–568.

    CAS  PubMed  Google Scholar 

  37. Capron C, Lacout C, Lecluse Y, Jalbert V, Chagraoui H, Charrier S et al. A major role of TGF-{beta}1 in the homing capacities of murine hematopoietic stem cell/ progenitors. Blood 2010; 116: 1244–1253.

    CAS  PubMed  Google Scholar 

  38. Larsson J, Blank U, Helgadottir H, Bjornsson JM, Ehinger M, Goumans MJ et al. TGF-beta signaling-deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood 2003; 102: 3129–3135.

    CAS  PubMed  Google Scholar 

  39. Larsson J, Blank U, Klintman J, Magnusson M, Karlsson S . Quiescence of hematopoietic stem cells and maintenance of the stem cell pool is not dependent on TGF-beta signaling in vivo. Exp Hematol 2005; 33: 592–596.

    CAS  PubMed  Google Scholar 

  40. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J . Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell 2006; 125: 929–941.

    CAS  PubMed  Google Scholar 

  41. Ransom DG, Bahary N, Niss K, Traver D, Burns C, Trede NS et al. The zebrafish moonshine gene encodes transcriptional intermediary factor 1gamma, an essential regulator of hematopoiesis. PLoS Biol 2004; 2: E237.

    PubMed  PubMed Central  Google Scholar 

  42. Bai X, Kim J, Yang Z, Jurynec MJ, Akie TE, Lee J et al. TIF1gamma controls erythroid cell fate by regulating transcription elongation. Cell 2010; 142: 133–143.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Monteiro R, Pouget C, Patient R . The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1gamma. EMBO J 2011; 30: 1093–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lenox LE, Perry JM, Paulson RF . BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood 2005; 105: 2741–2748.

    CAS  PubMed  Google Scholar 

  45. Perry JM, Harandi OF, Paulson RF . BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood 2007; 109: 4494–4502.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M et al. Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 2005; 121: 87–99.

    CAS  PubMed  Google Scholar 

  47. Morsut L, Yan KP, Enzo E, Aragona M, Soligo SM, Wendling O et al. Negative control of Smad activity by ectodermin/Tif1{gamma} patterns the mammalian embryo. Development 2010; 137: 2571–2578.

    CAS  PubMed  Google Scholar 

  48. Kim J, Kaartinen V . Generation of mice with a conditional allele for Trim33. Genesis 2008; 46: 329–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mishina Y, Suzuki A, Ueno N, Behringer RR . Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 1995; 9: 3027–3037.

    CAS  PubMed  Google Scholar 

  50. Winnier G, Blessing M, Labosky PA, Hogan BL . Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 1995; 9: 2105–2116.

    CAS  PubMed  Google Scholar 

  51. Zhang H, Bradley A . Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996; 122: 2977–2986.

    CAS  PubMed  Google Scholar 

  52. Sadlon TJ, Lewis ID, D’Andrea RJ . BMP4: its role in development of the hematopoietic system and potential as a hematopoietic growth factor. Stem Cells 2004; 22: 457–474.

    CAS  PubMed  Google Scholar 

  53. Maeno M, Mead PE, Kelley C, Xu RH, Kung HF, Suzuki A et al. The role of BMP-4 and GATA-2 in the induction and differentiation of hematopoietic mesoderm in Xenopus laevis. Blood 1996; 88: 1965–1972.

    CAS  PubMed  Google Scholar 

  54. Huber TL, Zhou Y, Mead PE, Zon LI . Cooperative effects of growth factors involved in the induction of hematopoietic mesoderm. Blood 1998; 92: 4128–4137.

    CAS  PubMed  Google Scholar 

  55. Schmid B, Furthauer M, Connors SA, Trout J, Thisse B, Thisse C et al. Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 2000; 127: 957–967.

    CAS  PubMed  Google Scholar 

  56. Schmerer M, Evans T . Primitive erythropoiesis is regulated by Smad-dependent signaling in postgastrulation mesoderm. Blood 2003; 102: 3196–3205.

    CAS  PubMed  Google Scholar 

  57. Gupta S, Zhu H, Zon LI, Evans T . BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis. Development 2006; 133: 2177–2187.

    CAS  PubMed  Google Scholar 

  58. Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 2003; 102: 906–915.

    CAS  PubMed  Google Scholar 

  59. Johansson BM, Wiles MV . Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol 1995; 15: 141–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Pearson S, Sroczynska P, Lacaud G, Kouskoff V . The stepwise specification of embryonic stem cells to hematopoietic fate is driven by sequential exposure to Bmp4, activin A, bFGF and VEGF. Development 2008; 135: 1525–1535.

    CAS  PubMed  Google Scholar 

  61. Park C, Afrikanova I, Chung YS, Zhang WJ, Arentson E, Fong Gh G et al. A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development 2004; 131: 2749–2762.

    CAS  PubMed  Google Scholar 

  62. Li F, Lu S, Vida L, Thomson JA, Honig GR . Bone morphogenetic protein 4 induces efficient hematopoietic differentiation of rhesus monkey embryonic stem cells in vitro. Blood 2001; 98: 335–342.

    CAS  PubMed  Google Scholar 

  63. Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S et al. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2008; 2: 72–82.

    CAS  PubMed  Google Scholar 

  64. McReynolds LJ, Gupta S, Figueroa ME, Mullins MC, Evans T . Smad1 and Smad5 differentially regulate embryonic hematopoiesis. Blood 2007; 110: 3881–3890.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hild M, Dick A, Rauch GJ, Meier A, Bouwmeester T, Haffter P et al. The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. Development 1999; 126: 2149–2159.

    CAS  PubMed  Google Scholar 

  66. McReynolds LJ, Tucker J, Mullins MC, Evans T . Regulation of hematopoiesis by the BMP signaling pathway in adult zebrafish. Exp Hematol 2008; 36: 1604–1615.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Singbrant S, Karlsson G, Ehinger M, Olsson K, Jaako P, Miharada K et al. Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. Blood 2010; 115: 4689–4698.

    CAS  PubMed  Google Scholar 

  68. Singbrant S, Moody JL, Blank U, Karlsson G, Umans L, Zwijsen A et al. Smad5 is dispensable for adult murine hematopoiesis. Blood 2006; 108: 3707–3712.

    CAS  PubMed  Google Scholar 

  69. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    CAS  PubMed  Google Scholar 

  70. Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, Gallacher L et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med 1999; 189: 1139–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2001; 2: 172–180.

    CAS  PubMed  Google Scholar 

  72. Nolta JA, Thiemann FT, Arakawa-Hoyt J, Dao MA, Barsky LW, Moore KA et al. The AFT024 stromal cell line supports long-term ex vivo maintenance of engrafting multipotent human hematopoietic progenitors. Leukemia 2002; 16: 352–361.

    CAS  PubMed  Google Scholar 

  73. Hutton JF, Rozenkov V, Khor FS, D′Andrea RJ, Lewis ID . Bone morphogenetic protein 4 contributes to the maintenance of primitive cord blood hematopoietic progenitors in an ex vivo stroma-noncontact co-culture system. Stem Cells Dev 2006; 15: 805–813.

    CAS  PubMed  Google Scholar 

  74. Utsugisawa T, Moody JL, Aspling M, Nilsson E, Carlsson L, Karlsson S . A road map toward defining the role of Smad signaling in hematopoietic stem cells. Stem Cells 2006; 24: 1128–1136.

    CAS  PubMed  Google Scholar 

  75. Blank U, Karlsson G, Moody JL, Utsugisawa T, Magnusson M, Singbrant S et al. Smad7 promotes self-renewal of hematopoietic stem cells. Blood 2006; 108: 4246–4254.

    CAS  PubMed  Google Scholar 

  76. Chadwick K, Shojaei F, Gallacher L, Bhatia M . Smad7 alters cell fate decisions of human hematopoietic repopulating cells. Blood 2005; 105: 1905–1915.

    CAS  PubMed  Google Scholar 

  77. Karlsson G, Blank U, Moody JL, Ehinger M, Singbrant S, Deng CX et al. Smad4 is critical for self-renewal of hematopoietic stem cells. J Exp Med 2007; 204: 467–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Labbe E, Letamendia A, Attisano L . Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proc Natl Acad Sci USA 2000; 97: 8358–8363.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H et al. Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann's organizer. Nature 2000; 403: 781–785.

    CAS  PubMed  Google Scholar 

  80. Itoh F, Itoh S, Goumans MJ, Valdimarsdottir G, Iso T, Dotto GP et al. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J 2004; 23: 541–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dong M, Blobe GC . Role of transforming growth factor-beta in hematologic malignancies. Blood 2006; 107: 4589–4596.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD et al. Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 1999; 59: 320–324.

    CAS  PubMed  Google Scholar 

  83. Villanueva A, Garcia C, Paules AB, Vicente M, Megias M, Reyes G et al. Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene 1998; 17: 1969–1978.

    CAS  PubMed  Google Scholar 

  84. Kim SJ, Letterio J . Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia 2003; 17: 1731–1737.

    CAS  PubMed  Google Scholar 

  85. Tang B, Bottinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR et al. Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med 1998; 4: 802–807.

    CAS  PubMed  Google Scholar 

  86. Zhu Y, Richardson JA, Parada LF, Graff JM . Smad3 mutant mice develop metastatic colorectal cancer. Cell 1998; 94: 703–714.

    CAS  PubMed  Google Scholar 

  87. Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Maki K, Ogawa S et al. Mutations of the Smad4 gene in acute myelogeneous leukemia and their functional implications in leukemogenesis. Oncogene 2001; 20: 88–96.

    CAS  PubMed  Google Scholar 

  88. Yang L, Wang N, Tang Y, Cao X, Wan M . Acute myelogenous leukemia-derived SMAD4 mutations target the protein to ubiquitin-proteasome degradation. Hum Mutat 2006; 27: 897–905.

    CAS  PubMed  Google Scholar 

  89. Molenaar JJ, Gerard B, Chambon-Pautas C, Cave H, Duval M, Vilmer E et al. Microsatellite instability and frameshift mutations in BAX and transforming growth factor-beta RII genes are very uncommon in acute lymphoblastic leukemia in vivo but not in cell lines. Blood 1998; 92: 230–233.

    CAS  PubMed  Google Scholar 

  90. Scott S, Kimura T, Ichinohasama R, Bergen S, Magliocco A, Reimer C et al. Microsatellite mutations of transforming growth factor-beta receptor type II and caspase-5 occur in human precursor T-cell lymphoblastic lymphomas/leukemias in vivo but are not associated with hMSH2 or hMLH1 promoter methylation. Leuk Res 2003; 27: 23–34.

    CAS  PubMed  Google Scholar 

  91. Knaus PI, Lindemann D, DeCoteau JF, Perlman R, Yankelev H, Hille M et al. A dominant inhibitory mutant of the type II transforming growth factor beta receptor in the malignant progression of a cutaneous T-cell lymphoma. Mol Cell Biol 1996; 16: 3480–3489.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Schiemann WP, Pfeifer WM, Levi E, Kadin ME, Lodish HF . A deletion in the gene for transforming growth factor beta type I receptor abolishes growth regulation by transforming growth factor beta in a cutaneous T-cell lymphoma. Blood 1999; 94: 2854–2861.

    CAS  PubMed  Google Scholar 

  93. Wolfraim LA, Fernandez TM, Mamura M, Fuller WL, Kumar R, Cole DE et al. Loss of Smad3 in acute T-cell lymphoblastic leukemia. N Engl J Med 2004; 351: 552–559.

    CAS  PubMed  Google Scholar 

  94. Komuro H, Valentine MB, Rubnitz JE, Saito M, Raimondi SC, Carroll AJ et al. p27KIP1 deletions in childhood acute lymphoblastic leukemia. Neoplasia 1999; 1: 253–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Takeuchi C, Takeuchi S, Ikezoe T, Bartram CR, Taguchi H, Koeffler HP . Germline mutation of the p27/Kip1 gene in childhood acute lymphoblastic leukemia. Leukemia 2002; 16: 956–958.

    CAS  PubMed  Google Scholar 

  96. Jakubowiak A, Pouponnot C, Berguido F, Frank R, Mao S, Massague J et al. Inhibition of the transforming growth factor beta 1 signaling pathway by the AML1/ETO leukemia-associated fusion protein. J Biol Chem 2000; 275: 40282–40287.

    CAS  PubMed  Google Scholar 

  97. Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H . The t(3;21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factor-beta-mediated growth inhibition of myeloid cells. Blood 1998; 92: 4003–4012.

    CAS  PubMed  Google Scholar 

  98. Lee DK, Kim BC, Brady JN, Jeang KT, Kim SJ . Human T-cell lymphotropic virus type 1 tax inhibits transforming growth factor-beta signaling by blocking the association of Smad proteins with Smad-binding element. J Biol Chem 2002; 277: 33766–33775.

    CAS  PubMed  Google Scholar 

  99. Nakahata S, Yamazaki S, Nakauchi H, Morishita K . Downregulation of ZEB1 and overexpression of Smad7 contribute to resistance to TGF-beta1-mediated growth suppression in adult T-cell leukemia/lymphoma. Oncogene 2010; 29: 4157–4169.

    CAS  PubMed  Google Scholar 

  100. Mitani K . Molecular mechanisms of leukemogenesis by AML1/EVI-1. Oncogene 2004; 23: 4263–4269.

    CAS  PubMed  Google Scholar 

  101. Ford AM, Palmi C, Bueno C, Hong D, Cardus P, Knight D et al. The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. J Clin Invest 2009; 119: 826–836.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sood R, Talwar-Trikha A, Chakrabarti SR, Nucifora G . MDS1/EVI1 enhances TGF-beta1 signaling and strengthens its growth-inhibitory effect but the leukemia-associated fusion protein AML1/MDS1/EVI1, product of the t(3;21), abrogates growth-inhibition in response to TGF-beta1. Leukemia 1999; 13: 348–357.

    CAS  PubMed  Google Scholar 

  103. Wang N, Kim HG, Cotta CV, Wan M, Tang Y, Klug CA et al. TGFbeta/BMP inhibits the bone marrow transformation capability of Hoxa9 by repressing its DNA-binding ability. EMBO J 2006; 25: 1469–1480.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Quere R, Karlsson G, Hertwig F, Rissler M, Lindqvist B, Fioretos T et al. SMAD4 sequestrates HOXA9 to protect hematopoietic stem cells against leukemia transformation. Blood 2010; 116: 3153.

    Google Scholar 

  105. Shehata M, Schwarzmeier JD, Hilgarth M, Hubmann R, Duechler M, Gisslinger H . TGF-beta1 induces bone marrow reticulin fibrosis in hairy cell leukemia. J Clin Invest 2004; 113: 676–685.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Le Bousse-Kerdiles MC, Chevillard S, Charpentier A, Romquin N, Clay D, Smadja-Joffe F et al. Differential expression of transforming growth factor-beta, basic fibroblast growth factor, and their receptors in CD34+ hematopoietic progenitor cells from patients with myelofibrosis and myeloid metaplasia. Blood 1996; 88: 4534–4546.

    CAS  PubMed  Google Scholar 

  107. Chagraoui H, Komura E, Tulliez M, Giraudier S, Vainchenker W, Wendling F . Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood 2002; 100: 3495–3503.

    CAS  PubMed  Google Scholar 

  108. Vannucchi AM, Bianchi L, Paoletti F, Pancrazzi A, Torre E, Nishikawa M et al. A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. Blood 2005; 105: 3493–3501.

    CAS  PubMed  Google Scholar 

  109. Gluckman E . Recent trends in allogeneic bone marrow transplantation. Clin Transpl 1989; 123–128.

  110. Attar EC, Scadden DT . Regulation of hematopoietic stem cell growth. Leukemia 2004; 18: 1760–1768.

    CAS  PubMed  Google Scholar 

  111. Antonchuk J, Sauvageau G, Humphries RK . HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 2002; 109: 39–45.

    CAS  PubMed  Google Scholar 

  112. Baum C, Dullmann J, Li Z, Fehse B, Meyer J, Williams DA et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101: 2099–2114.

    CAS  PubMed  Google Scholar 

  113. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    CAS  PubMed  Google Scholar 

  114. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    CAS  PubMed  Google Scholar 

  115. Murdoch B, Chadwick K, Martin M, Shojaei F, Shah KV, Gallacher L et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc Natl Acad Sci USA 2003; 100: 3422–3427.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med 2000; 192: 1365–1372.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang CC, Kaba M, Ge G, Xie K, Tong W, Hug C et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 2006; 12: 240–245.

    PubMed  PubMed Central  Google Scholar 

  118. Zhang CC, Kaba M, Iizuka S, Huynh H, Lodish HF . Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood 2008; 111: 3415–3423.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID . Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 2010; 16: 232–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 2007; 447: 1007–1011.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 2010; 329: 1345–1348.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Derynck R, Zhang YE . Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425: 577–584.

    CAS  PubMed  Google Scholar 

  123. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995; 270: 2008–2011.

    CAS  PubMed  Google Scholar 

  124. Blank U, Brown A, Adams DC, Karolak MJ, Oxburgh L . BMP7 promotes proliferation of nephron progenitor cells via a JNK-dependent mechanism. Development 2009; 136: 3557–3566.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Tang M, Wei X, Guo Y, Breslin P, Zhang S, Wei W et al. TAK1 is required for the survival of hematopoietic cells and hepatocytes in mice. J Exp Med 2008; 205: 1611–1619.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kretzschmar M, Doody J, Massague J . Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 1997; 389: 618–622.

    CAS  PubMed  Google Scholar 

  127. Kretzschmar M, Doody J, Timokhina I, Massague J . A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev 1999; 13: 804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Fuentealba LC, Eivers E, Ikeda A, Hurtado C, Kuroda H, Pera EM et al. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 2007; 131: 980–993.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Pera EM, Ikeda A, Eivers E, De Robertis EM . Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 2003; 17: 3023–3028.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. de Haan G, Weersing E, Dontje B, van Os R, Bystrykh LV, Vellenga E et al. In vitro generation of long-term repopulating hematopoietic stem cells by fibroblast growth factor-1. Dev Cell 2003; 4: 241–251.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission (Stemexpand); Swedish Medical Research Council; Swedish Cancer Society; Swedish Children Cancer Foundation; Clinical Research Award from Lund University Hospital and a grant from The Tobias Foundation awarded by the Royal Academy of Sciences. (SK). The Lund Stem Cell Center is supported by a Center of Excellence grant in life sciences from the Swedish Foundation for Strategic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Blank.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blank, U., Karlsson, S. The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 25, 1379–1388 (2011). https://doi.org/10.1038/leu.2011.95

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.95

Keywords

This article is cited by

Search

Quick links