Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Novel exosome-targeted T-cell-based vaccine counteracts T-cell anergy and converts CTL exhaustion in chronic infection via CD40L signaling through the mTORC1 pathway

Abstract

CD8+ cytotoxic T lymphocyte (CTL) exhaustion is a chief issue for ineffective virus elimination in chronic infectious diseases. We generated novel ovalbumin (OVA)-specific OVA-Texo and HIV-specific Gag-Texo vaccines inducing therapeutic immunity. To assess their therapeutic effect in chronic infection, we developed a new chronic infection model by i.v. infecting C57BL/6 mice with the OVA-expressing adenovirus AdVova. During chronic AdVova infection, mouse CTLs were found to express the inhibitory molecules programmed cell-death protein-1 (PD-1) and lymphocyte-activation gene-3 (LAG-3) and to be functionally exhausted, showing a significant deficiency in T-cell proliferation, IFN-γ production and cytolytic effects. Naive CD8+ T cells upregulated inhibitory PD-ligand 1 (PD-L1), B- and T-lymphocyte attenuator and T-cell anergy-associated molecules (Grail and Itch) while down-regulating the proliferative response upon stimulation in mice with chronic infection. Remarkably, the OVA-Texo vaccine counteracted T-cell anergy and converted CTL exhaustion. The latter was associated with (i) the upregulation of a marker for CTL functionality, diacetylated histone-H3 (diAcH3), (ii) a fourfold increase in CTLs, occurring independent of host DCs or CD4+ T cells, and (iii) the restoration of CTL IFN-γ production and cytotoxicity. In vivo OVA-Texo-stimulated CTLs upregulated the activities of the mTORC1 pathway-related molecules Akt, S6, eIF4E and T-bet, and treatment of the CTLs with an mTORC1 inhibitor, rapamycin, significantly reduced the OVA-Texo-induced increase in CTLs. Interestingly, OVA-Texo-mediated CD40L signaling played a critical role in the observed immunological effects. Importantly, the Gag-Texo vaccine induced Gag-specific therapeutic immunity in chronic infection. Therefore, this study should have a serious impact on the development of new therapeutic vaccines for human immunodeficiency virus (HIV-1) infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sallusto F, Lanzavecchia A, Araki K, Ahmed R . From vaccines to memory and back. Immunity 2010; 33: 451–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 1998; 8: 177–187.

    Article  CAS  PubMed  Google Scholar 

  3. Butz EA, Bevan MJ . Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 1998; 8: 167–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krammer PH, Arnold R, Lavrik IN . Life and death in peripheral T cells. Nat Rev Immunol 2007; 7: 532–542.

    Article  CAS  PubMed  Google Scholar 

  5. Harty JT, Badovinac VP . Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol 2008; 8: 107–119.

    Article  CAS  PubMed  Google Scholar 

  6. Kaech SM, Wherry EJ, Ahmed R . Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2002; 2: 251–262.

    Article  CAS  PubMed  Google Scholar 

  7. Harari A, Petitpierre S, Vallelian F, Pantaleo G . Skewed representation of functionally distinct populations of virus-specific CD4 T cells in HIV-1-infected subjects with progressive disease: changes after antiretroviral therapy. Blood 2004; 103: 966–972.

    Article  CAS  PubMed  Google Scholar 

  8. Pantaleo G, Koup RA . Correlates of immune protection in HIV-1 infection: what we know, what we don't know, what we should know. Nat Med 2004; 10: 806–810.

    Article  CAS  PubMed  Google Scholar 

  9. Donaghy H, Pozniak A, Gazzard B, Qazi N, Gilmour J, Gotch F et al. Loss of blood CD11c(+) myeloid and CD11c(-) plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood 2001; 98: 2574–2576.

    Article  CAS  PubMed  Google Scholar 

  10. Pacanowski J, Kahi S, Baillet M, Lebon P, Deveau C, Goujard C et al. Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 2001; 98: 3016–3021.

    Article  CAS  PubMed  Google Scholar 

  11. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 1998; 188: 2205–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009; 10: 29–37.

    Article  CAS  PubMed  Google Scholar 

  13. Fischbach MA, Bluestone JA, Lim WA . Cell-based therapeutics: the next pillar of medicine. Sci Transl Med 2013; 5: 179.

    Article  CAS  Google Scholar 

  14. Lapenta C, Santini SM, Logozzi M, Spada M, Andreotti M, Di Pucchio T et al. Potent immune response against HIV-1 and protection from virus challenge in hu-PBL-SCID mice immunized with inactivated virus-pulsed dendritic cells generated in the presence of IFN-alpha. J Exp Med 2003; 198: 361–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carbonneil C, Aouba A, Burgard M, Cardinaud S, Rouzioux C, Langlade-Demoyen P et al. Dendritic cells generated in the presence of granulocyte-macrophage colony-stimulating factor and IFN-alpha are potent inducers of HIV-specific CD8 T cells. AIDS 2003; 17: 1731–1740.

    Article  CAS  PubMed  Google Scholar 

  16. Villamide-Herrera L, Ignatius R, Eller MA, Wilkinson K, Griffin C, Mehlhop E et al. Macaque dendritic cells infected with SIV-recombinant canarypox ex vivo induce SIV-specific immune responses in vivo. AIDS Res Hum Retroviruses 2004; 20: 871–884.

    Article  CAS  PubMed  Google Scholar 

  17. Lu W, Arraes LC, Ferreira WT, Andrieu JM . Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat Med 2004; 10: 1359–1365.

    Article  CAS  PubMed  Google Scholar 

  18. Garcia F, Lejeune M, Climent N, Gil C, Alcamí J, Morente V et al. Therapeutic immunization with dendritic cells loaded with heat-inactivated autologous HIV-1 in patients with chronic HIV-1 infection. J Infect Dis 2005; 191: 1680–1685.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia F, Routy JP . Challenges in dendritic cells-based therapeutic vaccination in HIV-1 infection Workshop in dendritic cell-based vaccine clinical trials in HIV-1. Vaccine 2011; 29: 6454–6463.

    Article  CAS  PubMed  Google Scholar 

  20. Garcia F, Climent N, Assoumou L, Gil C, González N, Alcamí J et al. A therapeutic dendritic cell-based vaccine for HIV-1 infection. J Infect Dis 2011; 203: 473–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garcia F, Plana M, Climent N, Leon A, Gatell JM, Gallart T . Dendritic cell based vaccines for HIV infection: the way ahead. Hum Vaccin Immunother 2013; 9: 2445–2452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiang J, Huang H, Liu Y . A new dynamic model of CD8+ T effector cell responses via CD4+ T helper-antigen-presenting cells. J Immunol 2005; 174: 7497–7505.

    Article  CAS  PubMed  Google Scholar 

  23. Hao S, Liu Y, Yuan J, Zhang X, He T, Wu X et al. Novel exosome-targeted CD4+ T cell vaccine counteracting CD4+25+ regulatory T cell-mediated immune suppression and stimulating efficient central memory CD8+ CTL responses. J Immunol 2007; 179: 2731–2740.

    Article  CAS  PubMed  Google Scholar 

  24. Hao S, Yuan J, Xiang J . Nonspecific CD4(+) T cells with uptake of antigen-specific dendritic cell-released exosomes stimulate antigen-specific CD8(+) CTL responses and long-term T cell memory. J Leukoc Biol 2007; 82: 829–838.

    Article  CAS  PubMed  Google Scholar 

  25. Nanjundappa RH, Wang R, Xie Y, Umeshappa CS, Chibbar R, Wei Y et al. GP120-specific exosome-targeted T cell-based vaccine capable of stimulating DC- and CD4(+) T-independent CTL responses. Vaccine 2011; 29: 3538–3547.

    Article  CAS  PubMed  Google Scholar 

  26. Nanjundappa RH, Wang R, Xie Y, Umeshappa CS, Xiang J . Novel CD8+ T cell-based vaccine stimulates Gp120-specific CTL responses leading to therapeutic and long-term immunity in transgenic HLA-A2 mice. Vaccine 2012; 30: 3519–3525.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Li F, Liu Y, Hong K, Meng X, Chen J et al. HIV fragment gag vaccine induces broader T cell response in mice. Vaccine 2011; 29: 2582–2589.

    Article  CAS  PubMed  Google Scholar 

  28. Wang R, Xie Y, Zhao T, Tan X, Xu J, Xiang J . HIV-1 Gag-specific exosome-targeted T cell-based vaccine stimulates effector CTL responses leading to therapeutic and long-term immunity against Gag/HLA-A2-expressing B16 melanoma in transgenic HLA-A2 mice. Trials Vaccinol 2014; 3: 19–25.

    Article  Google Scholar 

  29. Wang R, Freywald A, Chen Y, Xu J, Tan X, Xiang J . Transgenic 4-1BBL-engineered vaccine stimulates potent Gag-specific therapeutic and long-term immunity via increased priming of CD44CD62L IL-7R CTLs with up- and downregulation of anti- and pro-apoptosis genes. Cell Mol Immunol 2015; 12: 456–465.

    Article  CAS  PubMed  Google Scholar 

  30. Chen L, Flies DB . Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013; 13: 227–242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Krebs P, Scandella E, Odermatt B, Ludewig B . Rapid functional exhaustion and deletion of CTL following immunization with recombinant adenovirus. J Immunol 2005; 174: 4559–4566.

    Article  CAS  PubMed  Google Scholar 

  32. Rodig N, Ryan T, Allen JA, Pang H, Grabie N, Chernova T et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur J Immunol 2003; 33: 3117–3126.

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Xie Y, Chan T, Sami A, Ahmed S, Liu Q et al. Adjuvant effect of HER-2/neu-specific adenoviral vector stimulating CD8(+) T and natural killer cell responses on anti-HER-2/neu antibody therapy for well-established breast tumors in HER-2/neu transgenic mice. Cancer Gene Ther 2011; 18: 489–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yajima T, Nishimura H, Sad S, Shen H, Kuwano H, Yoshikai Y . A novel role of IL-15 in early activation of memory CD8+ CTL after reinfection. J Immunol 2005; 174: 3590–3597.

    Article  CAS  PubMed  Google Scholar 

  35. Shi M, Hao S, Chan T, Xiang J . CD4(+) T cells stimulate memory CD8(+) T cell expansion via acquired pMHC I complexes and costimulatory molecules, and IL-2 secretion. J Leukoc Biol 2006; 80: 1354–1363.

    Article  CAS  PubMed  Google Scholar 

  36. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439: 682–687.

    Article  CAS  PubMed  Google Scholar 

  37. Abe BT, Shin DS, Mocholi E, Macian F . NFAT1 supports tumor-induced anergy of CD4(+) T cells. Cancer Res 2012; 72: 4642–4651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Umeshappa CS, Xie Y, Xu S, Nanjundappa RH, Freywald A, Deng Y et al. Th cells promote CTL survival and memory via acquired pMHC-I and endogenous IL-2 and CD40L signaling and by modulating apoptosis-controlling pathways. PLoS One 2013; 8: e64787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xie Y, Wang L, Freywald A, Qureshi M, Chen Y, Xiang J . A novel T cell-based vaccine capable of stimulating long-term functional CTL memory against B16 melanoma via CD40L signaling. Cell Mol Immunol 2013; 10: 72–77.

    Article  PubMed  CAS  Google Scholar 

  40. He S, Kato K, Jiang J, Wahl DR, Mineishi S, Fisher EM et al. Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells. PLoS One 2011; 6: e20107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahmed KA, Wang L, Munegowda MA, Mulligan SJ, Gordon JR, Griebel P et al. Direct in vivo evidence of CD4+ T cell requirement for CTL response and memory via pMHC-I targeting and CD40L signaling. J Leukoc Biol 2012; 92: 289–300.

    Article  CAS  PubMed  Google Scholar 

  42. Ankathatti Munegowda M, Deng Y, Mulligan SJ, Xiang J . Th17 and Th17-stimulated CD8(+) T cells play a distinct role in Th17-induced preventive and therapeutic antitumor immunity. Cancer Immunol Immunother 2011; 60: 1473–1484.

    Article  PubMed  CAS  Google Scholar 

  43. Tatsis N, Fitzgerald JC, Reyes-Sandoval A, Harris-McCoy KC, Hensley SE, Zhou D et al. Adenoviral vectors persist in vivo and maintain activated CD8+ T cells: implications for their use as vaccines. Blood 2007; 110: 1916–1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang TC, Millar J, Groves T, Grinshtein N, Parsons R, Takenaka S et al. The CD8+ T cell population elicited by recombinant adenovirus displays a novel partially exhausted phenotype associated with prolonged antigen presentation that nonetheless provides long-term immunity. J Immunol 2006; 176: 200–210.

    Article  CAS  PubMed  Google Scholar 

  45. Yang ZR, Wang HF, Zhao J, Peng YY, Wang J, Guinn BA et al. Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther 2007; 14: 599–615.

    Article  CAS  PubMed  Google Scholar 

  46. Finn JD, Bassett J, Millar JB, Grinshtein N, Yang TC, Parsons R et al. Persistence of transgene expression influences CD8+ T-cell expansion and maintenance following immunization with recombinant adenovirus. J Virol 2009; 83: 12027–12036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holst PJ, Orskov C, Thomsen AR, Christensen JP . Quality of the transgene-specific CD8+ T cell response induced by adenoviral vector immunization is critically influenced by virus dose and route of vaccination. J Immunol 2010; 184: 4431–4439.

    Article  CAS  PubMed  Google Scholar 

  48. Kaufman DR, Bivas-Benita M, Simmons NL, Miller D, Barouch DH . Route of adenovirus-based HIV-1 vaccine delivery impacts the phenotype and trafficking of vaccine-elicited CD8+ T lymphocytes. J Virol 2010; 84: 5986–5996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stelekati E, Wherry EJ . Chronic bystander infections and immunity to unrelated antigens. Cell Host Microbe 2012; 12: 458–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deng A, Chen S, Li Q, Lyu SC, Clayberger C, Krensky AM . Granulysin, a cytolytic molecule, is also a chemoattractant and proinflammatory activator. J Immunol 2005; 174: 5243–5248.

    Article  CAS  PubMed  Google Scholar 

  51. Brossart P, Zobywalski A, Grunebach F, Behnke L, Stuhler G, Reichardt VL et al. Tumor necrosis factor alpha and CD40 ligand antagonize the inhibitory effects of interleukin 10 on T-cell stimulatory capacity of dendritic cells. Cancer Res 2000; 60: 4485–4492.

    CAS  PubMed  Google Scholar 

  52. Pasare C, Medzhitov R . Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003; 299: 1033–1036.

    Article  CAS  PubMed  Google Scholar 

  53. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE . TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 2006; 108: 253–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bevan MJ . Helping the CD8(+) T-cell response. Nat Rev Immunol 2004; 4: 595–602.

    Article  CAS  PubMed  Google Scholar 

  55. Dispirito JR, Shen H . Histone acetylation at the single-cell level: a marker of memory CD8+ T cell differentiation and functionality. J Immunol 2010; 184: 4631–4636.

    Article  CAS  PubMed  Google Scholar 

  56. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ . Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229: 152–172.

    Article  CAS  PubMed  Google Scholar 

  57. Yang TC, Millar JB, Grinshtein N, Bassett J, Finn J, Bramson JL . T-cell immunity generated by recombinant adenovirus vaccines. Expert Rev Vaccines 2007; 6: 347–356.

    Article  CAS  PubMed  Google Scholar 

  58. Bassett JD, Swift SL, Bramson JL . Optimizing vaccine-induced CD8(+) T-cell immunity: focus on recombinant adenovirus vectors. Expert Rev Vaccines 2011; 10: 1307–1319.

    Article  CAS  PubMed  Google Scholar 

  59. Wherry EJ . T cell exhaustion. Nat Immunol 2011; 12: 492–499.

    Article  CAS  PubMed  Google Scholar 

  60. Yi JS, Cox MA, Zajac AJ . T-cell exhaustion: characteristics, causes and conversion. Immunology 2010; 129: 474–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. van Riet E, Hartgers FC, Yazdanbakhsh M . Chronic helminth infections induce immunomodulation: consequences and mechanisms. Immunobiology 2007; 212: 475–490.

    Article  CAS  PubMed  Google Scholar 

  62. Su Z, Segura M, Morgan K, Loredo-Osti JC, Stevenson MM . Impairment of protective immunity to blood-stage malaria by concurrent nematode infection. Infect Immun 2005; 73: 3531–3539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Metenou S, Kovacs M, Dembele B, Coulibaly YI, Klion AD, Nutman TB . Interferon regulatory factor modulation underlies the bystander suppression of malaria antigen-driven IL-12 and IFN-gamma in filaria-malaria co-infection. Eur J Immunol 2012; 42: 641–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yin J, Vahey MT, Dai A, Lewis MG, Arango T, Yalley-Ogunro J et al. Plasmodium inui infection reduces the efficacy of a simian immunodeficiency virus DNA vaccine in a rhesus macaque model through alteration of the vaccine-induced immune response. J Infect Dis 2012; 206: 523–533.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Elias D, Wolday D, Akuffo H, Petros B, Bronner U, Britton S . Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guerin (BCG) vaccination. Clin Exp Immunol 2001; 123: 219–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moorman JP, Zhang CL, Ni L, Ma CJ, Zhang Y, Wu XY et al. Impaired hepatitis B vaccine responses during chronic hepatitis C infection: involvement of the PD-1 pathway in regulating CD4(+) T cell responses. Vaccine 2011; 29: 3169–3176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Blackburn SD, Crawford A, Shin H, Polley A, Freeman GJ, Wherry EJ . Tissue-specific differences in PD-1 and PD-L1 expression during chronic viral infection: implications for CD8 T-cell exhaustion. J Virol 2010; 84: 2078–2089.

    Article  CAS  PubMed  Google Scholar 

  68. Derre L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P et al. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 2010; 120: 157–167.

    Article  CAS  PubMed  Google Scholar 

  69. Wells AD . New insights into the molecular basis of T cell anergy: anergy factors, avoidance sensors, and epigenetic imprinting. J Immunol 2009; 182: 7331–7341.

    Article  CAS  PubMed  Google Scholar 

  70. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998; 393: 474–478.

    Article  CAS  PubMed  Google Scholar 

  71. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR . Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998; 393: 478–480.

    Article  CAS  PubMed  Google Scholar 

  72. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ . T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998; 393: 480–483.

    Article  CAS  PubMed  Google Scholar 

  73. Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 2004; 574: 37–41.

    Article  CAS  PubMed  Google Scholar 

  74. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T . Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 2012; 209: 1201–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005; 25: 9543–9553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA . Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 2012; 5: ra46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kawada M, Tsukamoto T, Yamamoto H, Takeda A, Igarashi H, Watkins DI et al. Long-term control of simian immunodeficiency virus replication with central memory CD4+ T-cell preservation after nonsterile protection by a cytotoxic T-lymphocyte-based vaccine. J Virol 2007; 81: 5202–5211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. McKinnon LR, Kaul R, Kimani J, Nagelkerke NJ, Wachihi C, Fowke KR et al. HIV-specific CD8+ T-cell proliferation is prospectively associated with delayed disease progression. Immunol Cell Biol 2012; 90: 346–351.

    Article  CAS  PubMed  Google Scholar 

  79. Xing S, Bullen CK, Shroff NS, Shan L, Yang HC, Manucci JL et al. Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation. J Virol 2011; 85: 6060–6064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Redel L, Le Douce V, Cherrier T, Marban C, Janossy A, Aunis D et al. HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes. J Leukoc Biol 2010; 87: 575–588.

    Article  CAS  PubMed  Google Scholar 

  81. Shan L, Deng K, Shroff NS, Durand CM, Rabi SA, Yang HC et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 2012; 36: 491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ito R, Takahashi T, Katano I, Ito M . Current advances in humanized mouse models. Cell Mol Immunol 2012; 9: 208–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang L, Su L . HIV-1 immunopathogenesis in humanized mouse models. Cell Mol Immunol 2012; 9: 237–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mark Boyd for help in flow cytometric analyses. This work was supported by a Canadian Institute of Health Research (CIHR) grant (OCH 126276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Xiang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information for this article can be found on the Cellular & Molecular Immunology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Xu, A., Zhang, X. et al. Novel exosome-targeted T-cell-based vaccine counteracts T-cell anergy and converts CTL exhaustion in chronic infection via CD40L signaling through the mTORC1 pathway. Cell Mol Immunol 14, 529–545 (2017). https://doi.org/10.1038/cmi.2016.23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.23

Keywords

Search

Quick links