Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dlxin-1, a member of MAGE family, inhibits cell proliferation, invasion and tumorigenicity of glioma stem cells

Abstract

We have previously reported the presence of Dlxin-1, a member of the melanoma antigen gene (MAGE) family, in the brain and showed its function as a cell cycle arrest protein, suggesting that Dlxin-1 may have anti-proliferative functions in rapidly growing tumors. Using the cancer stem cell hypothesis, which attributes the initiation and progression of brain tumors to the cancer-initiating stem cells, we have investigated the role of Dlxin-1 in the glioma stem cells propagated by us as a cell culture system comprising of HNGC-2 cells. Our studies provide evidence about the role of Dlxin-1 as an anti-tumorigenic protein in the highly chemo-resistant glioma stem cells. Next, we show that these anti-proliferative effects are manifested by Dlxin-1 through down regulation of the activities of MMP-2 and MMP-9, and through interaction of Dlxin-1 with its target protein P311 that is involved in glioma cell invasion. In summary, we establish the roles for Dlxin-1, one as an anti-tumorigenic and anti-invasive protein in high-grade gliomas and the other as an inducer of differentiation of glioma stem cells. These two attributes, in conjunction, result in conversion of the drug-resistant brain tumor stem cells to the tumor-attenuated cells that may now be more amenable to effective therapeutic targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003; 100: 15178–15183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  3. Bao SD, Wu QL, McLendon RE, Hao YL, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756–760.

    Article  CAS  PubMed  Google Scholar 

  4. Das S, Srikanth M, Kessler JA . Cancer stem cells and glioma. Nat Clin Pract Neurol 2008; 4: 427–435.

    Article  CAS  PubMed  Google Scholar 

  5. Rebetz J, Tian D, Persson A, Widegren B, Salford LG, Englund E et al. Glial progenitor-like phenotype in low-grade glioma and enhanced CD133-expression and neuronal lineage differentiation potential in high-grade glioma. PLoS ONE 2008; 3: e1936.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barker PA, Salehi A . The MAGE proteins: emerging roles in cell cycle progression, apoptosis, and neurogenetic disease. J Neurosci Res 2002; 67: 705–712.

    Article  CAS  PubMed  Google Scholar 

  7. Williams ME, Strickland P, Watanabe K, Hinck L . UNC5H1 induces apoptosis via its juxtamembrane region through an interaction with NRAGE. J Biol Chem 2003; 278: 17483–17490.

    Article  CAS  PubMed  Google Scholar 

  8. Bertrand MJ, Kenchappa RS, Andrieu D, Leclercq-Smekens M, Nguyen HN, Carter BD et al. NRAGE, a p75NTR adaptor protein, is required for developmental apoptosis in vivo. Cell Death Differ 2008; 15: 1921–1929.

    Article  CAS  PubMed  Google Scholar 

  9. Shiras A, Bhosale A, Patekar A, Shepal V, Shastry P . Differential expression of CD44(S) and variant isoforms v3, v10 in three-dimensional cultures of mouse melanoma cell lines. Clin Exp Metastasis 2002; 19: 445–455.

    Article  CAS  PubMed  Google Scholar 

  10. Shiras A, Chettiar ST, Shepal V, Rajendran G, Prasad GR, Shastry P . Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 2007; 25: 1478–1489.

    Article  CAS  PubMed  Google Scholar 

  11. Chu CS, Xue B, Tu C, Feng ZH, Shi YH, Miao Y et al. NRAGE suppresses metastasis of melanoma and pancreatic cancer in vitro and in vivo. Cancer Lett 2007; 250: 268–275.

    Article  CAS  PubMed  Google Scholar 

  12. Tian XX, Rai D, Li J, Zou C, Bai Y, Wazer D et al. BRCA2 suppresses cell proliferation via stabilizing MAGE-D1. Cancer Res 2005; 65: 4747–4753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mosmann T . Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55–63.

    Article  CAS  PubMed  Google Scholar 

  14. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 1987; 47: 3239–3245.

    CAS  PubMed  Google Scholar 

  15. Chung CY, Murphy-Ullrich JE, Erickson HP . Mitogenesis, cell migration, and loss of focal adhesions induced by tenascin-C interacting with its cell surface receptor, annexin II. Mol Biol Cell 1996; 7: 883–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi SR, Cote RJ, Taylor CR . Antigen retrieval immunohistochemistry: past, present, and future. J Histochem Cytochem 1997; 45: 327–343.

    Article  CAS  PubMed  Google Scholar 

  17. Shiras A, Sengupta A, Shepal V . Cloning and tissue-specific gene expression studies with Dlxin-1, a newly identified transcriptional activator. Mol Cell Biol Res Commun 2001; 4: 313–319.

    Article  CAS  PubMed  Google Scholar 

  18. Corti S, Locatelli F, Papadimitriou D, Donadoni C, Salani S, Del Bo R et al. Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells 2006; 24: 975–985.

    Article  CAS  PubMed  Google Scholar 

  19. Shiras A, Bhosale A, Shepal V, Shukla R, Baburao VS, Prabhakara K et al. A unique model system for tumor progression in GBM comprising two developed human neuro-epithelial cell lines with differential transforming potential and coexpressing neuronal and glial markers. Neoplasia 2003; 5: 520–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen WG, Xue QY, Zhu J, Hu BS, Zhang Y, Wu YD et al. Inhibition of adenovirus-mediated human MAGE-D1 on angiogenesis in vitro and in vivo. Mol Cell Biochem 2007; 300: 89–99.

    Article  CAS  PubMed  Google Scholar 

  21. Xia WY, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y et al. Phosphorylation/cytoplasmic localization of p21(Cip1)/(WAF1) is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 2004; 10: 3815–3824.

    Article  CAS  PubMed  Google Scholar 

  22. Ruan S, Okcu MF, Pong RC, Andreeff M, Levin V, Hsieh JT et al. Attenuation of WAF1/Cip1 expression by an antisense adenovirus expression vector sensitizes glioblastoma cells to apoptosis induced by chemotherapeutic agents 1,3-bis(2-chloroethyl)-1-nitrosourea and cisplatin. Clin Cancer Res 1999; 5: 197–202.

    CAS  PubMed  Google Scholar 

  23. Zhang W, Kornblau SM, Kobayashi T, Gambel A, Claxton D, Deisseroth AB . High levels of constitutive WAF1/Cip1 protein are associated with chemoresistance in acute myelogenous leukemia. Clin Cancer Res 1995; 1: 1051–1057.

    CAS  PubMed  Google Scholar 

  24. Li Y, Dowbenko D, Lasky LA . AKT/PKB phosphorylation of p21(Cip/WAF1) enhances protein stability of p21(Cip/WAF1) and promotes cell survival. J Biol Chem 2002; 277: 11352–11361.

    Article  CAS  PubMed  Google Scholar 

  25. Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H et al. Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 1999; 79: 1828–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koike A, Kobayashi Y, Takagi T . Kinase pathway database: an integrated protein-kinase and NLP-based protein-interaction resource. Genome Res 2003; 13: 1231–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koike A, Takagi T . PRIME: automatically extracted protein interactions and molecular information database. In Silico Biol 2005; 5: 9–20.

    CAS  PubMed  Google Scholar 

  28. McDonough WS, Tran NL, Berens ME . Regulation of glioma cell migration by serine-phosphorylated P311. Neoplasia 2005; 7: 862–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  30. Li ZZ, Wang H, Eyler CE, Hjeimeiand AB, Rich JN . Turning cancer stem cells inside out: an exploration of glioma stem cell signaling pathways. J Biol Chem 2009; 284: 16705–11609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rich JN, Bao S . Chemotherapy and cancer stem cells. Cell Stem Cell 2007; 1: 353–355.

    Article  CAS  PubMed  Google Scholar 

  32. Ward RJ, Dirks PB . Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol 2007; 2: 175–189.

    Article  CAS  PubMed  Google Scholar 

  33. Park DM, Rich JN . Biology of glioma cancer stem cells. Mol Cells 2009; 28: 7–12.

    Article  CAS  PubMed  Google Scholar 

  34. Mayes DA, Hu YJ, Teng Y, Siegel E, Wu XS, Panda K et al. PAX6 suppresses the invasiveness of glioblastoma cells and the expression of the matrix metalloproteinase-2 gene. Cancer Res 2006; 66: 9809–9817.

    Article  CAS  PubMed  Google Scholar 

  35. Song T, Wu J, Fang F, Chen FH, Huo L, Zhang MY et al. Correlation analysis between the expression of P21WAF1/CIP1, P16 proteins and human glioma. Clin Exp Med 2008; 8: 151–157.

    Article  CAS  PubMed  Google Scholar 

  36. Kumar PS, Shiras A, Das G, Jagtap JC, Prasad V, Shastry P . Differential expression and role of p21(cip/waf1) and p27(kip1) in TNF-alpha-induced inhibition of proliferation in human glioma cells. Mol Cancer 2007; 6: 42.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hwang CY, Lee C, Kwon KS . Extracellular signal-regulated kinase 2-dependent phosphorylation induces cytoplasmic localization and degradation of p21(Cip1). Mol Cell Biol 2009; 29: 3379–3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee S, Helfman DM . Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem 2004; 279: 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  39. Sun X, Liu M, Wei Y, Liu F, Zhi X, Xu R et al. Overexpression of von Hippel-Lindau tumor suppressor protein and antisense HIF-1 alpha eradicates gliomas. Cancer Gene Ther 2006; 13: 428–435.

    Article  CAS  PubMed  Google Scholar 

  40. Thoma CR, Toso A, Gutbrodt KL, Reggi SP, Frew IJ, Schraml P et al. VHL loss causes spindle misorientation and chromosome instability. Nat Cell Biol 2009; 11: 994–U200.

    Article  CAS  PubMed  Google Scholar 

  41. Mariani L, McDonough WS, Hoelzinger DB, Beaudry C, Kaczmarek E, Coons SW et al. Identification and validation of P311 as a glioblastoma invasion gene using laser capture microdissection. Cancer Res 2001; 61: 4190–4196.

    CAS  PubMed  Google Scholar 

  42. Martens T, Laabs Y, Gunther HS, Kemming D, Zhu Z, Witte L et al. Inhibition of glioblastoma growth in a highly invasive nude mouse model can be achieved by targeting epidermal growth factor receptor but not vascular endothelial growth factor receptor-2. Clin Cancer Res 2008; 14: 5447–5458.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr Dattatraya Mujumdar, KEM Hospital, Mumbai for providing us with glioma samples, Dr Mahesh M Mandolkar, Dinanath Mangeshkar Hospital, Pune for the histopathology sections, CSIR, Government of India for student fellowships and NCCS, Pune, India for intramural financial support and DBT, Government of India for extra-mural funding support for the research work.

Grant: Grant support provided by Department of Biotechnology, Government of India, New Delhi. The fellowship of EMR, STC, RGK and NK was supported by Council of Scientific and Industrial Research (CSIR), New Delhi, India.

Disclaimer

The manuscript entitled ‘Dlxin-1, a member of MAGE family, inhibits cell proliferation, invasion and tumorigenicity of glioma stem cells’ is original research.

The above mentioned submitted manuscript has not been previously published.

We have not sent this manuscript for publication elsewhere while it is under consideration in Cancer Gene Therapy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Shiras.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, E., Chettiar, S., Kaur, N. et al. Dlxin-1, a member of MAGE family, inhibits cell proliferation, invasion and tumorigenicity of glioma stem cells. Cancer Gene Ther 18, 206–218 (2011). https://doi.org/10.1038/cgt.2010.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.71

Keywords

This article is cited by

Search

Quick links