Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An intrinsic frequency limit to the cochlear amplifier

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rapid charge movement associated with the OHC motor in isolated membrane patches.
Figure 2: Movement of an isolated OHC patch.
Figure 3: Voltage-dependent capacitance in isolated membrane patches.

References

  1. Davis, H. An active process in cochlear mechanics. Hearing Res. 9, 79–90 (1983).

    Google Scholar 

  2. Dallos, P. in The Cochlea(eds Dallos, P., Popper, A. N. &Fay, R. R.) 1–43 (Springer, New York, (1996)).

    Book  Google Scholar 

  3. Mammano, F. & Nobili, R. Biophysics of the cochlea: linear approximation. J. Acoust. Soc. Am. 93, 3320–3332 (1993).

    Google Scholar 

  4. Kalinec, F., Holley, M. C., Iwasa, K. H., Lim, D. J. & Kachar, B. Amembrane-based force generation in auditory sensory cells. Proc. Natl Acad. Sci. USA 89, 8671–8675 (1992).

    Google Scholar 

  5. Dallos, P. & Evans, B. High frequency motility of outer hair cells and the cochlear amplifier. Science 267, 2006–2009 (1995).

    Google Scholar 

  6. Ashmore, J. F. Forward and reverse transduction in the mammalian cochlea. Neurosci. Res. 11 (suppl.), 39–50 (1990).

    Google Scholar 

  7. 7. Santos-Sacchi, J. Reversible inhibition of voltage dependent outer hair cell motility and capacitance. J. Neurosci. 9, 2954–2962 (1991).

    Google Scholar 

  8. Forge, A. Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell Tiss. Res. 265, 473–483 (1991).

    Google Scholar 

  9. Gale, J. E. & Ashmore, J. F. The outer hair cell motor in membrane patches. Eur. J. Physiol. 434, 267–271 (1997).

    Google Scholar 

  10. Armstrong, C. M. & Bezanilla, F. Inactivation of the sodium channel. II Gating current experiments. J. Gen. Physiol. 70, 567–590 (1977).

    Google Scholar 

  11. Iwasa, K. H. Amembrane motor model for the fast motility of the outer hair cell. J. Acoust. Soc. Am. 96, 2216–2224 (1994).

    Google Scholar 

  12. Tunstall, M. J., Gale, J. E. & Ashmore, J. F. Action of salicylate on membrane capacitance of outer hair cells from the guinea pig cochlea. J. Physiol. (Lond.) 485, 739–752 (1995).

    Google Scholar 

  13. Ashmore, J. F. Afast motile response in guinea pig outer hair cells: the cellular basis of the cochlear amplifier. J. Physiol. (Lond.) 388, 323–347 (1987).

    Google Scholar 

  14. Santos-Sacchi, J. On the frequency limit and phase of outer hair cell motility: the effects of membrane filter. J. Neurosci. 12, 1906–1916 (1992).

    Google Scholar 

  15. Neher, E. & Marty, A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl Acad. Sci. USA 79, 6712–6716 (1982).

    Google Scholar 

  16. Maconochie, D. J., Fletcher, G. H. & Steinbach, J. H. The conductance of the muscle nicotinic receptor channel changes rapidly upon gating. Biophys. J. 68, 483–490 (1995).

    Google Scholar 

  17. Sigg, D., Stefani, E. & Bezanilla, F. Gating current noise produced by elementary transitions in Shaker potassium channels. Science 264, 578–582 (1994).

    Google Scholar 

  18. Conti, F. & Stühmer, W. Quantal charge redistributions accompanying the structural transitions of sodium channels. Eur. Biophys. J. 17, 53–59 (1989).

    Google Scholar 

  19. Hilgemann, D. W. Channel-like function of the Na, K pump probed at microsecond resolution in giant membrane patches. Science 263, 1429–1432 (1994).

    Google Scholar 

  20. Gadsby, D. C., Rakowski, R. F. & De Weer, P. Extracellular access to the Na,K pump: pathway similar to ion channel. Science 260, 100–103 (1993).

    Google Scholar 

  21. Rakowski, R. F. Charge movement by the Na,K pump in Xenopus oocytes. J. Gen. Physiol. 101, 117–144 (1993).

    Google Scholar 

  22. Yang, N. B., George, A. L. J & Horn, R. Molecular basis of charge movement in voltage gated sodium channels. Neuron 15, 213–218 (1995).

    Google Scholar 

  23. Ashmore, J. F. & Holley, M. C. Temperature dependence of a fast motile response in isolated outer hair cells of the guinea-pig cochlea. Q. J. Exp. Physiol. 73, 143–145 (1988).

    Google Scholar 

  24. Vater, M. & Lenoir, M. Ultrastructure of the Horseshoe bat's organ of Corti. I. Scanning electron microscopy. J. Comp. Neurol. 318, 367–379 (1992).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Hearing Research Trust, the Colt Foundation, the Royal Society, and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gale, J., Ashmore, J. An intrinsic frequency limit to the cochlear amplifier. Nature 389, 63–66 (1997). https://doi.org/10.1038/37968

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37968

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing