Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemical composition of dissolved organic nitrogen in the ocean

Abstract

Fixed nitrogen is one of the main limiting nutrients for primary production in the ocean1,2,3, where it is biologically available in the form of dissolved inorganic and organic matter. Inorganic nitrogen concentrations are consequently very low in surface waters of temperate ocean gyres, yet fixed nitrogen persists in the form of dissolved organic matter. The small, rapidly cycling organic compounds fundamental to microbial and planktonic growth (such as free amino acids, amines and urea4,5) account for only a minor fraction of total dissolved organic nitrogen (DON). In contrast, the vast majority of DON, especially in the deep ocean, resides in the form of nitrogenous substances that are resistant to biological degradation. These substances, which represent an enormous reservoir of fixed nitrogen, are not readily identified by conventional biochemical techniques, but have been assumed to consist largely of structurally complex macromolecules resulting from the degradation and spontaneous abiotic condensation of biochemical precursors6. Here we present 15N NMR measurements that contradict this view. Our results show that most higher-molecular-weight DON in the ocean exists in amide form, rather than as a collection of nitrogen heterocycles that might be indicative of spontaneous condensation products. Because these amides are unlikely to form abiotically, the bulk of the ocean's DON reservoir appears to derive directly from degradation-resistant biomolecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural abundance 15N CPMAS spectra for Pacific UDOM samples and selected natural materials.
Figure 2: Organic UDOM nitrogen forms in Pacific Ocean.

Similar content being viewed by others

References

  1. Redfield, A. C., Ketchum, B. H. & Richards, F. A. in The Sea (ed. Hill, N. H.) 26–76 (Wiley Interscience, New York, (1963)).

    Google Scholar 

  2. Smith, S. V., Kimmerer, W. J. & Walsh, T. W. Ventrical flux and biogeochemical turnover regulate nutrient limitation of net organic production in the North Pacific Gyre. Limnol. Oceanogr. 31, 161–167 (1986).

    Article  ADS  Google Scholar 

  3. Jackson, G. A. & Williams, P. M. Importance of dissolved organic nitrogen and phosphorus to biological nutrient cycling. Deep Sea Res. 32, 223–235 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Bronk, D. A. & Glibert, P. M. Nitrogen uptake, dissolved organic nitrogen release, and new production. Science 265, 1843–1852 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Keil, R. G. & Kirchman, D. L. Contribution of dissolved free amino acids and ammonium to the nitrogen requirements of heterotrophic bacterioplankton. Mar. Ecol. Prog. Ser. 73, 1–10 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Harvey, G. R., Boran, D. A., Chesal, L. A. & Tokar, J. M. The structure of marine fulvic and humic acids. Mar. Chem. 12, 119–132 (1983).

    Article  CAS  Google Scholar 

  7. Benner, R., Pakulski, J. D., McCarthy, M., Hedges, J. I. & Hatcher, P. G. Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255, 1561–1564 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Benner, R., Biddanda, B., Black, B. & McCarthy, M. Abundance, size distribution, and stable carbon and nitrogen isotope compositions of marine organic matter isolated by tangential-flow ultrafiltration. Mar. Chem. 57, 243–263 (1997).

    Article  CAS  Google Scholar 

  9. McCarthy, M. D., Hedges, J. I. & Benner, R. Major biochemical composition of dissolved high-molecular weight organic matter in seawater. Mar. Chem. 55, 281–297 (1996).

    Article  CAS  Google Scholar 

  10. McCarthy, M. D., Hedges, J. I. & Benner, R. The chemical composition of dissolved organic matter in seawater. Chem. Geol. 107, 503–507 (1993).

    Article  ADS  Google Scholar 

  11. Preston, C. M. Applications of NMR to soil organic matter analysis: history and prospects. Soil Sci. 161, 144–166 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Knicker, H., Frund, R. & Ludermann, H. D. The chemical nature of nitrogen in native soil organic matter. Naturwissenschaften 80, 219–221 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Knicker, H., Hatcher, P. G. & Scaroni, A. W. Solid-State 15N NMR spectroscopy of coal. Energy Fuels 9, 999–1102 (1995).

    Article  CAS  Google Scholar 

  14. Knicker, H., Hatcher, P. G. & Scaroni, A. W. 13C and 15N-NMR spectroscopic investigation on the formation of fossil algal residues. Org. Geochem. 6/7, 661–669 (1996).

    Article  Google Scholar 

  15. Levey, G. C. & Lichter, R. L. Nitrogen-15 NMR Spectroscopy (Wiley, New York, (1979)).

    Google Scholar 

  16. Cowie, G. L. & Hedges, J. I. Sources and reactivities of amino acids in a coastal marine environment. Limnol. Oceanogr. 37, 703–724 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Tanoue, E., Nishiyama, S., Kamo, M. & Tsugita, A. Bacterial membranes: possible source of dissolved protein in seawater. Geochim. Cosmochim. Acta 59, 2643–2648 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Keil, R. G. & Kirchman, D. L. Dissolved combined amino acids in marine waters as determined by a vapor-phase hydrolysis method. Mar. Chem. 33, 243–259 (1991).

    Article  CAS  Google Scholar 

  19. van Heemst, J. D. H., Baas, M., de Leeuw, J. W. & Benner, R. in Organic Geochemistry (ed. Oygard, K.) 694–698 (Falch Hurtigtrykk, Oslo, (1993)).

    Google Scholar 

  20. Derenne, S., Largeau, C. & Taulelle, F. Occurrence of non-hydrolysable amides in the macromolecular constituent of Scendesmus quadricauda cell wall as revealed by 15N NMR: Origin of n-alkylnitriles in pyprolysates of ultralaminae-containing kerogens. Geochim. Cosmochim. Acta 57, 851–857 (1992).

    Article  ADS  Google Scholar 

  21. De Leuuw, J. W. & Largeau, C. in Organic Geochemistry (eds Engle, M. & Macko, S. A.) 23–72 (Plenum, New York, (1993)).

    Book  Google Scholar 

  22. Rogers, H. J. Peptidoglycans: structure, function and variations. Ann. New York Acad. Sci. 235, 29–51 (1974).

    Article  ADS  CAS  Google Scholar 

  23. Aluwihare, L., Repeta, D. & Chen R. Amajor biopolymeric component to dissolved organic carbon in seawater. Nature 387, 166–169 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Bergamaschi, B. A. The Marine Geochemistry of Carbohydrates: Application and Development of New Techniques of Analysis, 1–184 (University of Washington, Seattle, (1995)).

    Google Scholar 

  25. Patience, R. I. et al. The functionality of organic nitrogen in some recent sediments from the Peru upwelling region. Org. Geochem. 18, 161–169 (1992).

    Article  CAS  Google Scholar 

  26. Benzing-Purdie, L., Ripmeester, J. A. & Preston, C. Elucidation of Nitrogen forms in melanoidins and humic acid by nitrogen-15 cross polarization magic angle-spinning nuclear magnetic resonance spectroscopy. J. Agric. Food Chem. 31, 913–915 (1983).

    Article  CAS  Google Scholar 

  27. Maillard, L. Formation de matieres humiques par action de polypeptides sur les sucres. C. R. Acad. Sci. 156, 148–149 (1912).

    Google Scholar 

  28. Williams, P. M. & Druffel, E. R. M. Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330, 246–248 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Knicker, H. & Ludemann, H. N-15 and C-13 CPMAS and solution NMR studies of N-15 enriched plant material during 600 days of microbial degradation. Org. Geochem. 23, 329–341 (1995).

    Article  CAS  Google Scholar 

  30. Ripmeester, J. A., Hawkins, R. E., MacPhee, J. A. & Nandi, B. N. On the interaction between pyridine and coal studies by CPMAS 15N NMR. Fuel 65, 740–742 (1986).

    Article  CAS  Google Scholar 

  31. Benner, R. & Strom, M. Acritical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Mar. Chem. 41, 153–160 (1993).

    Article  CAS  Google Scholar 

  32. Hedges, J. I. & Stern, J. H. Carbon and nitrogen determinations of carbonate-containing solids. Limnol. Oceanogr. 29, 657–663 (1983).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the captain and the crew of the RV John Vickers for assistance with obtaining Equatorial Pacific samples, B. Black for help with sample processing, G. Cowie for advice in amino-acid analysis, and D. Bear for guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew McCarthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, M., Pratum, T., Hedges, J. et al. Chemical composition of dissolved organic nitrogen in the ocean. Nature 390, 150–154 (1997). https://doi.org/10.1038/36535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36535

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing