Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion

Abstract

Many bacterial pathogens use a type III protein secretion system to deliver virulence effector proteins directly into the host cell cytosol, where they modulate cellular processes1,2. A requirement for the effective translocation of several such effector proteins is the binding of specific cytosolic chaperones, which typically interact with discrete domains in the virulence factors3,4,5. We report here the crystal structure at 1.9 Å resolution of the chaperone-binding domain of the Salmonella effector protein SptP with its cognate chaperone SicP. The structure reveals that this domain is maintained in an extended, unfolded conformation that is wound around three successive chaperone molecules. Short segments from two different SptP molecules are juxtaposed by the chaperones, where they dimerize across a hydrophobic interface. These results imply that the chaperones associated with the type III secretion system maintain their substrates in a secretion-competent state that is capable of engaging the secretion machinery to travel through the type III apparatus in an unfolded or partially folded manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protease footprinting delineates the chaperone-binding sequence of SptP.
Figure 2: Each molecule of SptP binds as an unfolded polypeptide to three SicP chaperones.
Figure 3: Different portions of SptP bind identical motifs in SicP primarily through hydrophobic interactions.
Figure 4: The tetrameric SicP arrangement presents an extensively hydrophobic surface that is buried on SptP binding.
Figure 5: The hydrophobic dimerization of SptP and the extensive homodimeric SicP interface hold the complex together.

Similar content being viewed by others

References

  1. Galán, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 322–328 (1999).

    Google Scholar 

  2. Cornelis, G. R. & Van Gijsegem, F. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54, 735–774 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Wattiau, P., Bernier, B., Deslée, P., Michiels, T. & Cornelis, G. R. Individual chaperones required for Yop secretion by Yersinia. Proc. Natl Acad. Sci. USA 91, 10493–10497 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wattiau, P., Woestyn, S. & Cornelis, G. R. Customized secretion chaperones in pathogenic bacteria. Mol. Microbiol. 20, 255–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Bennett, J. C. Q. & Hughes, C. From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol. 8, 202–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Kaniga, K., Uralil, J., Bliska, J. B. & Galán, J. E. A secreted tyrosine phosphatase with modular effector domains encoded by the bacterial pathogen Salmonella typhimurium. Mol. Microbiol. 21, 633–641 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Fu, Y. & Galán, J. E. A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Stebbins, C. E. & Galan, J. E. Modulation of host signaling by a bacterial mimic. Structure of the Salmonella effector SptP bound to Rac1. Mol. Cell 6, 1449–1460 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Galán, J. E. & Zhou, D. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl Acad. Sci. USA 97, 8754–8761 (2000).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Fu, Y. & Galán, J. E. Identification of a specific chaperone for SptP, a substrate of the centisome 63 type III secretion system of Salmonella typhimurium. J. Bacteriol. 180, 3393–3399 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Evdokimov, A. G., Tropea, J. E., Routzahn, K. M., Copeland, T. D. & Waugh, D. S. Structure of the N-terminal domain of Yersinia pestis YopH at 2.0 Å resolution. Acta Crystallogr. D 57, 793–799 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Smith, C. L., Khandelwal, P., Keliikuli, K., Zuiderweg, E. R. P. & Saper, M. A. Structure of the type III secretion and substrate-binding domain of Yersinia YopH phosphatase. Mol. Microbiol. (in the press).

  13. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998).

    ADS  CAS  PubMed  Google Scholar 

  14. Blocker, A. et al. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147, 683–693 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stebbins, C. E., Kaelin, W. G. Jr & Pavletich, N. P. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284, 455–461 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Terwilliger, T. C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Terwilliger, T. C. Maximum likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Perrakis, A., Morris, R. M. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol. 6, 458–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  21. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Kraulis, P. J. Molscript: a program to produce both detailed and schematic plits or protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  23. Merrit, E. A. & Murphy, M. E. Raster3D Version 2.0: a program for photorealistic molecular graphics. Acata Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  24. Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following people for access to and assistance with crystallographic equipment: at Yale University School of Medicine, P. Pepin of the Macromolecular X-ray Crystallography Facility, and S. Kunchaparty and A.-M. Quinn of the Research Computing Group for workstation access; at the CHESS, D. Szebenyi and the MacChess staff; B. Sweet, A. Saxena and the staff of Brookhaven beamline X12C. We also acknowledge N. Papavasiliou, P. Jeffrey, S. Fugmann and members of the Galán laboratory for discussions and critical reading of this manuscript before submission. C.E.S. was supported by a fellowship of the Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation. This work was funded by Public Health Services grants to J.E.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Galán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stebbins, C., Galán, J. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414, 77–81 (2001). https://doi.org/10.1038/35102073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35102073

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing