Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanisms of extensive spatiotemporal chaos in Rayleigh–Bénard convection

Abstract

Spatially extended dynamical systems exhibit complex behaviour in both space and time—spatiotemporal chaos1,2. Analysis of dynamical quantities (such as fractal dimensions and Lyapunov exponents3) has provided insights into low-dimensional systems; but it has proven more difficult to understand spatiotemporal chaos in high-dimensional systems, despite abundant data describing its statistical properties1,4,5. Initial attempts have been made to extend the dynamical approach to higher-dimensional systems, demonstrating numerically that the spatiotemporal chaos in several simple models is extensive6,7,8 (the number of dynamical degrees of freedom scales with the system volume). Here we report a computational investigation of a phenomenon found in nature, ‘spiral defect’ chaos5,9 in Rayleigh–Bénard convection, in which we find that the spatiotemporal chaos in this state is extensive and characterized by about a hundred dynamical degrees of freedom. By studying the detailed space–time evolution of the dynamical degrees of freedom, we find that the mechanism for the generation of chaotic disorder is spatially and temporally localized to events associated with the creation and annihilation of defects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spiral defect chaos in Rayleigh–Bénard convection.
Figure 2: Lyapunov spectral density and its integral.
Figure 3: Magnitudes of the temperature–field components of the Lyapunov vector corresponding to the largest Lyapunov exponent, scaled by the first finite-time exponents.

Similar content being viewed by others

References

  1. Cross,M. C. & Hohenberg,P. C. Pattern-formation outside of equilibrium. Rev. Mod. Phys. 65, 851– 1112 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Cross,M. C. & Hohenberg,P. C. Spatiotemporal chaos. Science 263, 1569–1570 ( 1994).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Eckmann,J.-P. & Ruelle,D. Ergodic-theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617– 656 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Gollub,J. P. Order and disorder in fluid motion. Proc. Natl Acad. Sci. USA 92, 6705–6711 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Bodenschatz,E., Pesch,W. & Ahlers,G. Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 32, 709–778 (2000).

    Article  ADS  Google Scholar 

  6. Ruelle,D. Large volume limit of the distribution of characteristic exponents in turbulence. Commun. Math. Phys. 87, 287– 302 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  7. Manneville,P. Liapunov Exponents for the Kuramoto-Sivashinsky Model Vol. 280 , 319–326 (Lecture Notes in Physics, Springer, Berlin, 1994).

    Google Scholar 

  8. Egolf,D. A. & Greenside,H. S. Relation between fractal dimension and spatial correlation length for extensive chaos. Nature 369, 129–131 (1994).

    Article  ADS  Google Scholar 

  9. Morris,S. W., Bodenschatz,E., Cannell,D. S. & Ahlers,G. Spiral defect chaos in large aspect ratio Rayleigh-Bénard convection. Phys. Rev. Lett. 71, 2026– 2029 (1993).

    Article  ADS  CAS  Google Scholar 

  10. de Bruyn,J. et al. Apparatus for the study of Rayleigh-Bénard convection in gases under pressure. Rev. Sci. Instrum. 67, 2043–2067 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Decker,W., Pesch,W. & Weber,A. Spiral defect chaos in Rayleigh-Bénard convection. Phys. Rev. Lett. 73, 648–651 ( 1994).

    Article  ADS  CAS  Google Scholar 

  12. Morris,S. W., Bodenschatz,E., Cannell,D. S. & Ahlers,G. The spatiotemporal structure of spiral-defect chaos. Physica D 97, 164–179 ( 1996).

    Article  ADS  Google Scholar 

  13. Hu,Y., Ecke,R. E. & Ahlers,G. Transition to spiral-defect chaos in low Prandtl number convection. Phys. Rev. Lett. 74, 391– 394 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Hu,Y., Ecke,R. E. & Ahlers,G. Convection for Prandtl numbers near 1: Dynamics of textured patterns. Phys. Rev. E 51, 3263– 3279 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Egolf,D. A., Melnikov,I. V. & Bodenschatz, E. Importance of local pattern properties in spiral defect chaos. Phys. Rev. Lett. 80, 3228– 3231 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Ecke,R. E., Hu,Y., Mainieri,R. & Ahlers,G. Excitation of spirals and chiral-symmetry breaking in Rayleigh-Bénard convection. Science 269, 1704–1707 ( 1995).

    Article  ADS  CAS  Google Scholar 

  17. Assenheimer,M. & Steinberg,V. Transition between spiral and target states in Rayleigh–Bénard convection. Nature 367, 345–347 ( 1994).

    Article  ADS  Google Scholar 

  18. Cross,M. C. & Tu,Y. Defect dynamics for spiral chaos in Rayleigh-Bénard convection. Phys. Rev. Lett. 75, 834– 837 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Plapp,B. B., Egolf,D. A., Bodenschatz, E. & Pesch,W. Dynamics and selection of giant spirals in Rayleigh-Bénard convection. Phys. Rev. Lett. 81, 5334– 5337 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Cakmur,R. V., Egolf,D. A., Plapp,B. B. & Bodenschatz,E. Bistability and competition of spatiotemporal chaotic and fixed point attractors in Rayleigh-Bénard convection. Phys. Rev. Lett. 79, 1853– 1856 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Zoldi,S. M., Liu,J., Bajaj,K. M. S., Greenside,H. S. & Ahlers, G. Extensive scaling and nonuniformity of the Karhunen-Loeve decomposition for the spiral-defect chaos state. Phys. Rev. E 58, R6903–R6906 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Chaté,H. Lyapunov analysis of spatiotemporal intermittency. Europhys. Lett. 21, 419–425 ( 1993).

    Article  ADS  Google Scholar 

  23. Egolf,D. A. Dynamical dimension of defects in spatiotemporal chaos. Phys. Rev. Lett. 81, 4120–4123 ( 1998).

    Article  ADS  CAS  Google Scholar 

  24. Busse,F. H. & Clever,R. M. Instabilities of convection rolls in a fluid of moderate Prandtl number. J. Fluid Mech. 91, 319–335 (1979).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with E. Bodenschatz and R. Mainieri. This work was funded by the US Department of Energy, and significant computational resources were provided on the Nirvana machines of the Advanced Computing Laboratory at Los Alamos National Laboratory. The development of a related version of the Boussinesq equation solver benefited from the support of a US National Science Foundation grant from the Division of Materials Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Egolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egolf, D., Melnikov, I., Pesch, W. et al. Mechanisms of extensive spatiotemporal chaos in Rayleigh–Bénard convection. Nature 404, 733–736 (2000). https://doi.org/10.1038/35008013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35008013

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing