Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic instabilities and memory effects in vortex matter

Abstract

The magnetic flux line lattice in type II superconductors serves as a useful system in which to study condensed matter flow, as its dynamic properties are tunable. Recent studies have shown a number of puzzling phenomena associated with vortex motion, including: low-frequency noise1,2,3,4,5 and slow voltage oscillations3,6; a history-dependent dynamic response7,8,9,10,11,12, and memory of the direction, amplitude duration and frequency of the previously applied current13,14; high vortex mobility for alternating current, but no apparent vortex motion for direct currents13,15,16; and strong suppression of an a.c. response by small d.c. bias13. Taken together, these phenomena are incompatible with current understanding of vortex dynamics. Here we report a generic mechanism that accounts for these observations. Our model, which is derived from investigations of the current distribution across single crystals of NbSe2, is based on a competition between the injection of a disordered vortex phase at the sample edges, and the dynamic annealing of this metastable disorder by the transport current. For an alternating current, only narrow regions near the edges are in the disordered phase, while for d.c. bias, most of the sample is in the disordered phase—preventing vortex motion because of more efficient pinning. The resulting spatial dependence of the disordered vortex system serves as an active memory of the previous history.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Critical current versus temperature, and the dynamic coexistence of the ordered and disordered phases.
Figure 2: Current density profiles Jac(x) in crystal B.
Figure 3: Frequency dependence of the resistance Rac(f) and of the width of the disordered regions xacd in crystal B.
Figure 4: Measured resistance as a function of d.c. bias, and the corresponding distribution of the alternating current in crystal A.

Similar content being viewed by others

References

  1. Marley, A. C., Higgins, M. J. & Bhattacharya, S. Flux flow noise and dynamical transitions in a flux line lattice. Phys. Rev. Lett. 74, 3029–3032 (1995).

    Article  ADS  Google Scholar 

  2. Merithew, R. D. et al. Persistent metastable states in vortex flow at the peak effect in NbSe2. Phys. Rev. Lett. 77, 3197–3199 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Kwok, W. K. et al. Dynamic instabilities in the vortex lattice of YBa2Cu3O7. Physica C 293, 111–117 (1997).

    Article  ADS  CAS  Google Scholar 

  4. D'Anna, G. et al. Vortex-motion-induced voltage noise in YBa2Cu3O7 single crystals. Phys. Rev. Lett. 75, 3521–3524 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Tsuboi, T., Hanaguri, T. & Maeda, A. Local density fluctuations of moving vortices in the solid and liquid phases in Bi2Sr2CaCu2O8. Phys. Rev. Lett. 80, 4550–4553 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Gordeev, S. N. et al. Current-induced organization of vortex motion in type-II superconductors. Nature 385, 324–326 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Bhattacharya, S. & Higgins, M. J. Flux-flow fingerprint of disorder: melting versus tearing of a flux-line lattice. Phys. Rev. B 52, 64–67 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Henderson, W. et al. Metastability and glassy behavior of a driven flux-line lattice. Phys. Rev. Lett. 77, 2077–2080 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Banerjee, S. S. et al. Anomalous peak effect in CeRu2 and 2H-NbSe2: Fracturing of a flux line lattice. Phys. Rev. B 58, 995–999 (1999).

    Article  ADS  Google Scholar 

  10. Banerjee, S. S. et al. Metastability and switching in the vortex state of 2H-NbSe2. Appl. Phys. Lett. 74, 126–128 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Wordenweber, R., Kes, P. H. & Tsuei, C. C. Peak and history effect in two-dimensional collective flux pinning. Phys. Rev. B 33, 3172–3180 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Kokkaliaris, S. et al. Onset of plasticity and hardening of the hysteretic response in the vortex system of YBa2Cu3O7-δ. Phys. Rev. Lett. 82, 5116–5119 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Henderson, W., Andrei, E. Y. & Higgins, M. J. Plastic motion of a vortex lattice driven by alternating current. Phys. Rev. Lett. 81, 2352–2355 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Xiao, Z. L., Andrei, E. Y. & Higgins, M. J. Flow induced organization and memory of a vortex lattice. Phys. Rev. Lett. 83, 1664–1667 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Andrei, E. Y. et al. Current driven organization of magnetic vortices. J. Phys. IV 10, 5–10 (1999).

    Google Scholar 

  16. Metlushko, V. et al. Driven vortex states and relaxation in single crystal YBa2Cu4O8. Preprint cond-mat/9804121 at 〈http://xxx.lanl.gov〉 (1999).

  17. Gammel, P. L. et al. Structure and correlation of a flux line lattice in crystalline Nb through peak effect. Phys. Rev. Lett. 80, 833–836 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Khaykovich, B. et al. Vortex-lattice phase transitions in Bi2Sr2CaCu2O8 crystals with different oxygen stoichiometry. Phys. Rev. Lett. 76, 2555–2558 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Giamarchi, T. & Le Doussal, P. Elastic theory of pinned flux lattices. Phys. Rev. Lett. 72, 1530–1533 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Ertas, D. & Nelson, D. R. Irreversibility, mechanical entanglement and thermal melting in superconducting vortex crystal with point impurities. Physica C 272, 79–85 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Vinokur, V. et al. Lindemann criterion and vortex-matter phase transitions in high-temperature superconductors. Physica C 295, 209–217 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Pardo, F. et al. Topological defects in the flux-line lattice and their relationship to the critical current of a type-II superconductor. Phys. Rev. Lett. 78, 4633–4636 (1996).

    Article  ADS  Google Scholar 

  23. Yaron, U. et al. Structural evidence for a two-step process in the depinning of the superconducting flux-line lattice. Nature 376, 753–755 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Bean, C. P. & Livingston, J. D. Surface barrier in type-II superconductors. Phys. Rev. Lett. 12, 14–16 (1964).

    Article  ADS  Google Scholar 

  25. Paltiel, Y. et al. Surface barrier dominated transport in NbSe2. Phys. Rev. B 58, R14763–R14766 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Fuchs, D. T. et al. Transport properties governed by surface barriers in Bi2Sr2CaCu2O8. Nature 391, 373–376 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Fuchs, D. T. et al. Possible new vortex matter phases in Bi2Sr2CaCu2O8. Phys. Rev. Lett. 80, 4971–4974 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Burlachkov, L., Koshelev, A. E. & Vinokur, V. M. Transport properties of high-temperature superconductors: surface vs. bulk effect. Phys. Rev. B 54, 6750–6757 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. B. Littlewood for discussions. The work at the Weizmann Institute of Science was supported by the Israel Science Foundation—Centre of Excellence Program, by the US-Israel Binational Science Foundation (BSF), and by the Alhadeff research award. E.Y.A. was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Paltiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paltiel, Y., Zeldov, E., Myasoedov, Y. et al. Dynamic instabilities and memory effects in vortex matter. Nature 403, 398–401 (2000). https://doi.org/10.1038/35000145

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000145

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing