Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Passive infrared spectroscopy of the eruption plume at Popocatépetl volcano, Mexico

Abstract

Volcanic gases provide important insights into deep-Earth processes, and gas composition and flux variations show promise as predictors of eruptive activity1,2,3. But data correlating gas composition with eruptions are sparse, largely because such studies have traditionally involved direct sampling inside a volcanic crater — a hazardous operation that has resulted in numerous deaths4,5. Crater-rim-based spectroscopy6,7,8,9, closed-path spectroscopy of gases sampled from aircraft10, and time-averaged studies using volatile traps11,12,13 allow measurements to be taken from safer distances. But when a full-scale explosive eruption threatens, even these methods become dangerous as the hazard radius expands to many kilometres. Previously, only sulphur dioxide has been reliably measurable at such large distances, using correlation spectroscopy14. Here we describe techniques that extend the useful range of passive infrared spectroscopy to monitor many gases at distances of over 17 km. We demonstrate the use of these techniques in a high-temporal-resolution study of short-term compositional variations associated with an explosive eruption at Mexico's Popocatépetl volcano on 25–26 February 1997. We observed a steady increase in SiF4/SO2 over several days preceding the eruption, followed by a tenfold decrease in this ratio over a few hours immediately afterwards.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiometrically calibrated clear-sky passive LWIR spectra of the Popocatépetl plume, 1 cm−1 resolution.
Figure 2: Mid-wave infrared results for the Popocatépetl plume.
Figure 3: Time variation of SiF4 and SO2 output at Popocatépetl, 21–26 February 1997.

Similar content being viewed by others

References

  1. Allard, P. in Forecasting Volcanic Events (eds Tazieff, H. & Sabroux, J.-C.) 337–394 (Elsevier, Amsterdam, (1983)).

    Google Scholar 

  2. Fischer, T. P. et al. Correlation between SO2flux and long-period seismicity at Galeras volcano. Nature 368, 135–137 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Tedesco, D. Monitoring Active Volcanoes (eds McGuire, B., Kilburn, C. & Murray, J.) (UCL Press, London, (1995)).

    Google Scholar 

  4. Kerr, R. A. Volcanologists ponder a spate of deaths in the line of duty. Science 260, 289–290 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Baxter, P. J. & Gresham, A. Deaths and injuries in the eruption of Galeras Volcano, Colombia, 14 January 1993. J. Volcanol. Geotherm. Res. 77, 325–338 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Francis, P., Chaffin, C., Maciejewski, A. & Oppenheimer, C. Remote determination of SiF4in volcanic plumes: A new tool for volcano monitoring. Geophys. Res. Lett. 23, 249–252 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Francis, P., Maciejewski, A., Oppenheimer, C., Chaffin, C. & Caltabiano, T. SO2:HCl ratios in the plumes from Mt. Etna and Vulcano determined by Fourier transform spectroscopy. Geophys. Res. Lett. 22, 1717–1720 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Mori, T. & Notsu, K. Remote CO, COS, CO2, SO2, HCl detection and temperature estimation of volcanic gas. Geophys. Res. Lett. 24, 2047–2050 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Stix, J., Morrow, W., Nicholls, R. & Charland, A. Infrared remote sensing of CO and COS gas emitted by the Galeras Volcano, Colombia, January 8–10, 1993. Can. J. Remote Sens. 22, 297–304 (1996).

    Article  ADS  Google Scholar 

  10. McGee, K. A. & Gerlach, T. M. Airborne volcanic plume measurements using a FTIR spectrometer, Kilauea volcano, Hawaii. Geophys. Res. Lett. 25, 615–618 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Noguchi, K. & Kamiya, H. Prediction of eruptions by measuring the chemical composition and amount of gases. Bull. Volcanol. 24, 367–378 (1963).

    Article  ADS  Google Scholar 

  12. Italiano, F., Nuccio, P. M., Pecoraino, G. & Valenza, M. Monitoring of acid gases at the crater of Vulcano using the method of the alkaline traps. Acta Vulcanol. 1, 249–254 (1991).

    Google Scholar 

  13. Goff, F. et al. Geochemical surveillance of magmagtic volatites at Popocatépetl Volcano, Mexico. Geol. Soc. Am. Bull 110, 695–710 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Realmuto, V. J., Sutton, A. J. & Elias, T. Multispectral thermal infrared mapping of sulfur dioxide plumes: A case study from the East Rift Zone of Kilauea Volcano, Hawaii. J. Geophys. Res. B 107, 15057–15072 (1997).

    Article  ADS  Google Scholar 

  15. Naughton, J. J., Derby, J. V. & Glover, R. B. Infrared measurements on volcanic gas and fume: Kilauea eruption, 1968. J. Geophys. Res. 74, 3273–3277 (1969).

    Article  ADS  CAS  Google Scholar 

  16. Mori, T., Notsu, K., Tohjima, Y. & Wakita, H. Remote detection of HCl and SO2in volcanic gas from Unzen volcano, Japan. Geophys. Res. Lett. 20, 1355–1358 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Mori, T. et al. Remote detection of fumarolic gas chemistry at Vulcano, Italy, using an FT-IR spectral radiometer. Earth Planet. Sci. Lett. 134, 219–224 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Notsu, K., Mori, T., Igarishi, G., Tohjima, Y. & Wakita, H. Infrared spectral radiometer: A new tool for remote measurement of SO2of volcanic gas. Geochem. J. 27, 361–366 (1993).

    Article  CAS  Google Scholar 

  19. Nixon, G. T., Demant, A., Armstrong, R. L. & Harakal, J. E. K-Ar and geologic data bearing on the age and evolution of the Trans-Mexican Volcanic Belt. Geofis. Int. 26, 109–158 (1987).

    CAS  Google Scholar 

  20. Robin, C. Le volcan Popocatépetl (Mexique): structure, evolution petrologique et risques. Bull. Volcanol. 47, 299–315 (1984).

    Article  Google Scholar 

  21. Siebe, C., Abrams, M., Macias, J. L. & Obenholzner, J. Repeated volcanic disasters in Prehispanic time at Popocatépetl, central Mexico: Past key to the future? Geology 24, 399–402 (1996).

    Article  ADS  Google Scholar 

  22. Waitz, P. Popocatépetl again in activity. Am. J. Sci., 5th ser. 1(1), 81–83 (1921).

    Article  Google Scholar 

  23. Delgado, H. & Cárdenas-G., L. in Volcanic Activity and the Environment (abstr.) 49 (IAVCEI, Puerto Vallarta, Mexico, (1997)).

    Google Scholar 

  24. Delagdo, H., Venegas, J. J., Cárdenas, L. & Doukas, M. Explosive eruption hazards at Popocatépetl Volcano (Mexico): The SO2flux measurements insight to the problem. Geol. Soc. Am. Annu. Meeting, Prog. Abstr. A–109 (1995).

  25. Stimac, J. A., Siebe, C. & Schaaf, P. in Volcanic Activity and the Environment (abstr.) 76 (IAVCEI, Puerto Vallarta, Mexico, (1997)).

    Google Scholar 

  26. De la Cruz, S. & Siebe, C. The giant Popocatépetl stirs. Nature 388, 227 (1997).

    Article  ADS  Google Scholar 

  27. Fowler, J. B. Athird generation water bath based blackbody source. J. Res. Natl Inst. Stand. Technol. 100, 591–599 (1995).

    Article  Google Scholar 

  28. Love, S. P. et al. Integrated infrared/UV/LIDAR remote sensing of volcanic emissions at White island and Mt. Ruapehu, New Zealand. (Abstr.) Eos 77, F802 (1996).

    Google Scholar 

  29. Kyle, P. R., Sybeldon, L. M., McIntosh, W. C., Meeker, K. & Symonds, R. in Volcanological and Environmental Studies of Mount Erebus, Antarctica (ed. Kyle, P. R.) 69–82 (Am. Geophys. Union, Washington DC, (1994)).

    Google Scholar 

  30. Hanst, P. L., Hanst, S. T. & Williams, G. M. Infrared Spectra for Quantitative Analysis of Gases (QASoft Database) (Infrared Analysis, Inc., Anaheim, CA, (1996)).

    Google Scholar 

  31. White, A. F. & Hochella, M. F. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows. Geochim. Cosmochim. Acta 56, 3711–3721 (1992).

    Article  ADS  CAS  Google Scholar 

  32. Symonds, R. B., Reed, M. H. & Rose, W. I. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: insights into magma degassing and fumarolic processes. Geochim. Cosmochim. Acta 56, 633–657 (1992).

    Article  ADS  CAS  Google Scholar 

  33. Symonds, R. B. & Reed, M. H. Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: Calculation methods, thermochemical data and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. Am. J. Sci. 293, 758–864 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Meli for access and logistical support, and P. G. Weber, S. Gerstl and D.Pettit for discussions on remote sensing applications. This work was supported by Laboratory Directed Research and Development (LDRD) grants (Remote Sensing Science) from Los Alamos National Laboratory, and by the Mexican National Center for Disaster Prevention (CENAPRED), the Mexican National Science and Technology Commission (CONACYT), and the Universidad Nacional Autónoma de México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Love.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, S., Goff, F., Counce, D. et al. Passive infrared spectroscopy of the eruption plume at Popocatépetl volcano, Mexico. Nature 396, 563–567 (1998). https://doi.org/10.1038/25109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25109

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing