Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex

Abstract

Organisms in many phyla determine sexual fate by distinguishing one X chromosome from two. Here we use the model organism Caenorhabditis elegans to dissect such an X-chromosome-counting mechanism in molecular detail. In this nematode, several genes on the X chromosome called X signal elements communicate X-chromosome dose by controlling the activity of the sex-determination gene xol-1 (refs 1, 2). xol-1 specifies male (XO) fatewhen active and hermaphrodite (XX) fate when inactive3,4. The only X signal element described so far represses xol-1 post-transcriptionally, but xol-1 is repressed in XX animals by transcriptional and post-transcriptional mechanisms2. Here we identify a nuclear-hormone-receptor homologue, SEX-1, that regulates the transcription of xol-1. We show that sex-1 is vital to X-chromosome counting: changing sex-1 gene dose in XX or XO embryos causes sexual transformation and death from inadequate dosage compensation (the hermaphrodite-specific process that equalizes X-gene expression between the sexes5). The SEX-1 protein acts directly on xol-1, associating with its promoter in vivo and repressing xol-1 transcription in XX embryos. Thus, xol-1 is the direct molecular target of the primary sex-determination signal, and the dose of a nuclear hormone receptor helps to communicate X-chromosome number to determine nematode sex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: sex-1 represses xol-1 transcription in XX animals.
Figure 2: The molecular nature of sex-1.
Figure 3: The temporal and spatial expression of SEX-1 are consistent with its roleas an X signal element that represses xol-1 transcription.
Figure 4: SEX-1 localizes to extrachromosomal DNA arrays containing xol-1 promoter sequences.

Similar content being viewed by others

References

  1. Akerib, C. C. & Meyer, B. J. Identification of X chromosome regions in C. elegans that contain sex-determination signal elements. Genetics 138, 1105–1125 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nicoll, M., Akerib, C. C. & Meyer, B. J. X-chromosome-counting mechanisms that determine nematode sex. Nature 388, 200–204 (1997).

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Miller, L. M., Plenefisch, J. D., Casson, L. P. & Meyer, B. J. xol-1: a gene that controls the male modes of both sex determination and X chromosome dosage compensation in C. elegans. Cell 55, 167–183 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Rhind, N. R., Miller, L. M., Kopczynski, J. B. & Meyer, B. J. xol-1 acts as an early switch in the C. elegans male/hermaphrodite decision. Cell 80, 71–82 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Meyer, B. J. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 209–240 (Cold Spring Harbor Press, New York, (1997).

    Google Scholar 

  6. Plenefisch, J. D., DeLong, L. & Meyer, B. J. Genes that implement the hermaphrodite mode of dosage compensation in Caenorhabditis elegans. Genetics 121, 57–76 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hodgkin, J., Zellan, J. D. & Albertson, D. G. Identification of a candidate primary sex determination locus, fox-1, on the X chromosome of Caenorhabditis elegans. Development 120, 3681–3689 (1994).

    CAS  PubMed  Google Scholar 

  8. Hodgkin, J. & Albertson, D. G. Isolation of dominant XO-feminization mutations in Caenorhabditis elegans: new regulatory tra alleles and an X chromosome duplication with implications for primary sex determination. Genetics 141, 527–542 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kostrouch, Z., Kostrouchova, M. & Rall, J. E. Steroid/thyroid hormone receptor genes in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 92, 156–159 (1995).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  10. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Minucci, S. & Ozato, K. Retinoid receptors in transcriptional regulation. Curr. Opin. Genet. Dev. 6, 567–574 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H. & Moras, D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375, 377–382 (1995).

    Article  CAS  ADS  PubMed  Google Scholar 

  13. Renaud, J.-P. et al. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 378, 681–689 (1995).

    Article  CAS  ADS  PubMed  Google Scholar 

  14. Wagner, R. L. et al. Astructural role for hormone in the thyroid hormone receptor. Nature 378, 690–697 (1995).

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Stone, B. L. & Thummel, C. S. The Drosophila 78C early late puff contains E78, an ecdysone-inducible gene that encodes a novel member of the nuclear hormone receptor superfamily. Cell 75, 307–320 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Harding, H. P. & Lazar, M. A. The monomer-binding orphan nuclear receptor Rev-Erb represses transcription as a dimer on a novel direct repeat. Mol. Cell. Biol. 15, 4791–4802 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Desbois, C., Aubert, D., Legrand, C., Pain, B. & Samarut, J. Anovel mechanism of action for v-ErbA: abrogation of the inactivation of transcription factor AP-1 by retinoic acid and thyroid hormone receptors. Cell 67, 731–740 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Ramkissoon, U. & Goodfellow, P. Early steps in mammalian sex determination. Curr. Opin. Genet. Dev. 6, 316–321 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Swain, A., Narvaez, V., Burgoyne, P., Camerino, G. & Lovell-Badge, R. Dax1 antagonizes Sry action in mammalian sex determination. Nature 391, 761–767 (1998).

    Article  CAS  ADS  PubMed  Google Scholar 

  20. Raymond, C. S. et al. Evidence for evolutionary conservation of sex-determining genes. Nature 391, 691–695 (1998).

    Article  CAS  ADS  PubMed  Google Scholar 

  21. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fire, A., Harrison, S. W. & Dixon, D. Amolecular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93, 189–198 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Williams, B. D., Schrank, B., Huynh, C., Shownkeen, R. & Waterston, R. H. Agenetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131, 609–624 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chuang, P.-T., Albertson, D. G. & Meyer, B. J. DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79, 459–474 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Straight, A. F., Belmont, A. S., Robinett, C. C. & Murray, A. W. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Meneely, P. M. & Wood, W. B. An autosomal gene that affects X chromosome expression and sex determination in Caenorhabditis elegans. Genetics 106, 29–44 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Garriga and P. Baum for providing gm41; A. Gonzalez-Serrichio and P.Sternberg for the concept of GFP-tagged arrays and for pPD49-78; J. Lieb for suggesting the use of tagged arrays to analyse protein–DNA interactions; D. Lapidus and P. Woronoff for help with figures; A.Sluder and H. Stunnenberg for advice on SEX-1 sequence analysis; and T. Cline, H. Dawes, J. Lieb, M.Nicoll, D. Reiner and J. Rine for advice and comments on the manuscript. This work was supported bya grant from the NIH. I.C. is a Howard Hughes Medical Institute Predoctoral Fellow. B.J.M. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmi, I., Kopczynski, J. & Meyer, B. The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex. Nature 396, 168–173 (1998). https://doi.org/10.1038/24164

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24164

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing