Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary and Mini Review
  • Published:

Commentary and Mini-Review

Gene silencing of the p15/INK4B cell-cycle inhibitor by hypermethylation: an early or later epigenetic alteration in myelodysplastic syndromes?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Aoki T, Ohashi H, Uchida T, Murate TA, Saito H, Kinoshita TA . Expression levels of DNA methyltransferase genes do not correlate with p15INK4B gene methylation in myelodysplastic syndromes. Leukemia 2003 (in press).

  2. Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 2001; 97: 1172–1179.

    Article  CAS  PubMed  Google Scholar 

  3. Esteller M . CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002; 21: 5427–5440.

    Article  CAS  PubMed  Google Scholar 

  4. Santini V, Kantarjian HM, Issa JP . Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 2001; 134: 573–586.

    Article  CAS  PubMed  Google Scholar 

  5. Chim CS, Liang R, Kwong YL . Hypermethylation of gene promoters in hematological neoplasia. Hematol Onco 2002; 20: 167–176.

    Article  CAS  Google Scholar 

  6. Malumbres M, Perez de Castro I, Santos J, Melendez B, Mangues R, Serrano M et al. Inactivation of the cyclin-dependent kinase inhibitor p15INK4b by deletion and de novo methylation with independence of p16INK4a alterations in murine primary T-cell lymphomas. Oncogene 1997; 14: 1361–1370.

    Article  CAS  PubMed  Google Scholar 

  7. Latres E, Malumbres M, Sotillo R, Martin J, Ortega S, Martin-Caballero J et al. Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis. EMBO J 2000; 19: 3496–3506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Teofili L, Rutella S, Chiusolo P, La Barbera EO, Rumi C, Ranelletti FO et al. Expression of p15INK4B in normal hematopoiesis. Exp Hematol 1998; 26: 1133–1139.

    CAS  PubMed  Google Scholar 

  9. Teofili L, Morosetti R, Martini M, Urbano R, Putzulu R, Rutella S et al. Expression of cyclin-dependent kinase inhibitor p15(INK4B) during normal and leukemic myeloid differentiation. Exp Hematol 2000; 28: 519–526.

    Article  CAS  PubMed  Google Scholar 

  10. Sakashita K, Koike K, Kinoshita T, Shiohara M, Kamijo T, Taniguchi S et al. Dynamic DNA methylation change in the CpG island region of p15 during human myeloid development. J Clin Invest 2001; 108: 1195–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Teofili L, Martini M, Di Mario A, Rutella S, Urbano R, Luongo M et al. Expression of p15(ink4b) gene during megakaryocytic differentiation of normal and myelodysplastic hematopoietic progenitors. Blood 2001; 98: 495–497.

    Article  CAS  PubMed  Google Scholar 

  12. Wong IH, Ng MH, Huang DP, Lee JC . Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes: potential prognostic implications. Blood 2000; 95: 1942–1949.

    CAS  PubMed  Google Scholar 

  13. Chim CS, Liang R, Tam CY, Kwong YL . Methylation of p15 and p16 genes in acute promyelocytic leukemia: potential diagnostic and prognostic significance. J Clin Oncol 2001; 19: 2033–2040.

    Article  CAS  PubMed  Google Scholar 

  14. Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB . Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res 1997; 57: 837–841.

    CAS  PubMed  Google Scholar 

  15. Uchida T, Knoshita T, Nagai H, Nakahara Y, Saito H, Hotta T et al. Hypermethylation of p15ink4b gene in myelodysplastic syndromes. Blood 1997; 90: 1403–1409.

    CAS  PubMed  Google Scholar 

  16. Quesnel B, Guillerm G, Verecque R, Wattel E, Preudhomme C, Bauters F et al. Methylation of the p15INK4b gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 1998; 91: 2985–2990.

    CAS  PubMed  Google Scholar 

  17. Hofmann WK, Koeffler HP . Important features of myelodysplastic syndrome. Int J Hematol 2002; 76 (Suppl 2): 222–227.

    Article  PubMed  Google Scholar 

  18. Aoki E, Uchida T, Ohashi H, Nagai H, Murase T, Ichikawa A et al. Methylation status of the p15INK4B gene in hematopoietic progenitors and peripheral blood cells in myelodysplastic syndromes. Leukemia 2000; 14: 586–593.

    Article  CAS  PubMed  Google Scholar 

  19. Tien HF, Tang JL, Tsay W, Liu MC, Lee FY, Wang CH et al. Methylation of the p15INK4B gene in myelodysplastic syndrome: it can be detected early at diagnosis or during disease progression and is highly associated with leukaemic transformation. Br J Haematol 2001; 112: 148–154.

    Article  CAS  PubMed  Google Scholar 

  20. Preisler HD, Li B, Chen H, Fisher L, Nayini J, Raza A et al. p15INK4B gene methylation and expression in normal, myelodysplastic, and acute myelogenous leukemia cells and in the marrow cells of cured lymphoma patients. Leukemia 2001; 15: 1589–1595.

    Article  CAS  PubMed  Google Scholar 

  21. Daskalakis M, Ngyuyen TT, Nguyen C, Guldberg P, Köhler G, Wijermans P et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2′deoxycytidine (decitabine) treatment. Blood 2002; 100: 2957–2963.

    Article  CAS  PubMed  Google Scholar 

  22. Chen H, Wu S . Hypermethylation of the p15(INK4B) gene in acute leukemia and myelodysplastic syndromes. Chin Med J 2002; 115: 987–990.

    CAS  PubMed  Google Scholar 

  23. Au WY, Fung A, Man C, Ma SK, Wan TS, Liang R et al. Aberrant p15 gene promoter methylation in therapy-related myelodysplastic syndrome and acute myeloid leukaemia: clincopathological and karyotypic associations. Br J Haematol 2003; 120: 1062–1065.

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen C, Liang G, Ngyuen TT, Tsao-Wie D, Groshen S,, Lübbert M et al. Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. J Natl Canc Inst 2001; 93: 1465–1472.

    Article  CAS  Google Scholar 

  25. Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA et al. The human DNA methyltransferases (DNMTs)1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 1999; 27: 2291–2298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sato M, Horio Y, Sekido Y, Minna JD, Shimokata K, Hasegawa Y . The expression of DNA methyltransferases and methyl-CpG-binding proteins is not associated with the methylation status of p14ARF, p16INK4a and RASSF1A in human lung cancer cell lines. Oncogene 2002; 21: 4822–4829.

    Article  CAS  PubMed  Google Scholar 

  27. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Danenberg PV, Laird P . CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res 1999; 59: 2302–2306.

    CAS  PubMed  Google Scholar 

  28. Rhee I, Bachmann KE, Park BH, Jair KW, Yen RW, Schuebel KE et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002; 416: 552–556.

    Article  CAS  PubMed  Google Scholar 

  29. Ehrlich M, Jiang G, Fiala E, Dome JS, Yu MC, Long TI et al. Hypomethylation and hypermethylation of DNA in Wilm‘s tumors. Oncogene 2002; 21: 6694–6702.

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen CT, Gonzales FA, Jones PA . Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res 2001; 29: 4598–4606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wijermans PW, Lübbert M, Verhoef G, Bosly A, Ravoet C, Andre M et al. Low-dose 5-Aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome; a multicenter phase II study in elderly patients. J Clin Oncol 2000; 18: 956–962.

    Article  CAS  PubMed  Google Scholar 

  32. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002; 20: 2429–2440.

    Article  CAS  PubMed  Google Scholar 

  33. Bender CM, Pao MM, Jones PA . Inhibition of DNA methylation by 5-Aza-2′-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 1998; 58: 95–101.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support by Wilhelm-Sander-Stiftung, Deutsche Forschungsgemeinschaft and José Carreras Stiftung is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Lübbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lübbert, M. Gene silencing of the p15/INK4B cell-cycle inhibitor by hypermethylation: an early or later epigenetic alteration in myelodysplastic syndromes?. Leukemia 17, 1762–1764 (2003). https://doi.org/10.1038/sj.leu.2403045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403045

This article is cited by

Search

Quick links