Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor

Abstract

Many motile species of bacteria are propelled by flagella, which are rigid helical filaments turned by rotary motors in the cell membrane1,2,3. The motors are powered by the transmembrane gradient of protons or sodium ions. Although bacterial flagella contain many proteins, only three—MotA, MotB and FliG—participate closely in torque generation. MotA and MotB are ion-conducting membrane proteins that form the stator of the motor. FliG is a component of the rotor, present in about 25 copies per flagellum. It is composed of an amino-terminal domain that functions in flagellar assembly and a carboxy-terminal domain (FliG-C) that functions specifically in motor rotation. Here we report the crystal structure of FliG-C from the hyperthermophilic eubacterium Thermotoga maritima. Charged residues that are important for function, and which interact with the stator protein MotA4,5, cluster along a prominent ridge on FliG-C. On the basis of the disposition of these residues, we present a hypothesis for the orientation of FliG-C domains in the flagellar motor, and propose a structural model for the part of the rotor that interacts with the stator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alignment of E.coli and T. maritima FliG-C protein sequences.
Figure 2: Stereoview ribbon representation of the FliG-C structure.
Figure 3: Stereoview of the putative active-site ridge of FliG-C.
Figure 4: Hypothesis for the location and orientation of FliG-C in the flagellar motor.

Similar content being viewed by others

References

  1. Blair, D. F. How bacteria sense and swim. Annu. Rev. Microbiol. 49, 489–522 (1995).

    Article  CAS  Google Scholar 

  2. Macnab, R. M. in Escherichia coli and Salmonella typhimurium: Cellular nd Molecular Biology (eds Neidhardt, F. C.) 123–146 (American Society for Microbiology, Washington DC, (1996).

    Google Scholar 

  3. DeRosier, D. J. The turn of the screw: the bacterial flagellar motor. Cell 93, 17–20 (1998).

    Article  CAS  Google Scholar 

  4. Lloyd, S. A. & Blair, D. F. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. Mol. Biol. 266, 733–744 (1997).

    Article  CAS  Google Scholar 

  5. Zhou, J., Lloyd, S. A. & Blair, D. F. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 95, 6436–6441 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Irikura, V. M., Kihara, M., Yamaguchi, S., Sockett, H. & Macnab, R. M. Salmonella typhimurium fliG and flN mutations causing defects in assembly, rotation, and switching of the flagellar motor. J. Bacteriol. 175, 802–810 (1993).

    Article  CAS  Google Scholar 

  7. Huber, R.et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90° C. Arch. Microbiol. 144, 324–333 (1986).

    Article  CAS  Google Scholar 

  8. Yamaguchi, S., Fujita, H., Ishihara, A., Aizawa, S. & Macnab, R. M. Subdivision of flagellar genes of Salmonella typhimurium into regions responsible for assembly, rotation, and switching. J. Bacteriol. 166, 187–193 (1986).

    Article  CAS  Google Scholar 

  9. Hutchinson, E. G. & Thornton, J. M. PROMOTIF—a program to identify and analyze structural motifs in proteins. Prot. Sci. 5, 212–220 (1996).

    Article  CAS  Google Scholar 

  10. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  11. Zhou, J. & Blair, D. F. Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. J. Mol. Biol. 273, 428–439 (1997).

    Article  CAS  Google Scholar 

  12. Yamaguchi, S.et al. Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J. Bacteriol. 168, 1172–1179 (1986).

    Article  CAS  Google Scholar 

  13. Welch, M., Oosawa, K., Aizawa, S.-I. & Eisenbach, M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. Natl Acad. Sci. USA 90, 8787–8791 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Marykwas, D. L. & Berg, H. C. Amutational analysis of the interaction between FliG and FliM, two components of the flagellar motor of Escherichia coli. J. Bacteriol. 178, 1289–1294 (1996).

    Article  CAS  Google Scholar 

  15. Tang, H., Braun, T. F. & Blair, D. F. Motility protein complexes in the bacterial flagellar motor. J. Mol. Biol. 261, 209–221 (1996).

    Article  CAS  Google Scholar 

  16. Garza, A. G., Biran, R., Wohlschlegel, J. & Manson, M. D. Mutations in motB suppressible by changes in stator or rotor components of the bacterial flagellar motor. J. Mol. Biol. 258, 270–285 (1996).

    Article  CAS  Google Scholar 

  17. Francis, N. R., Sosinsky, G. E., Thomas, D. & DeRosier, D. J. Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J. Mol. Biol. 235, 1261–1270 (1994).

    Article  CAS  Google Scholar 

  18. Zhao, R., Pathak, N., Jaffe, H., Reese, T. S. & Khan, S. FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J. Mol. Biol. 261, 195–208 (1996).

    Article  CAS  Google Scholar 

  19. Khan, S., Dapice, M. & Reese, T. S. Effects of mot gene expression on the structure of the flagellar motor. J. Mol. Biol. 202, 575–584 (1988).

    Article  CAS  Google Scholar 

  20. Jones, C. J., Macnab, R. M., Okino, H. & Aizawa, S.-I. Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J. Mol. Biol. 212, 377–387 (1990).

    Article  CAS  Google Scholar 

  21. Francis, N. R., Irikura, V. M., Yamaguchi, S., DeRosier, D. J. & Macnab, R. M. Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. Proc. Natl. Acad. Sci. USA 89, 6304–6308 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Braun, T. F.et al. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. J. Bacteriol. 181, 3542–3551 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramakrishnan, V., Finch, J. T., Graziano, V., Lee, P. L. & Sweet, R. M. The crystal structure of the globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219–223 (1993).

    Article  ADS  CAS  Google Scholar 

  24. McRee, D. E. Avisual protein crystallographic software system for X11/XView. J. Molec. Graph. 10, 44–46 (1992).

    Article  Google Scholar 

  25. Furey, W. & Swaminathan, S. PHASES: A program package for the processing and analysis of diffraction data from macromolecules Methods Enzymol. 277, 590–620 (1997).

    Article  CAS  Google Scholar 

  26. Brünger, A. T. X-PLOR Version 3.843, a System for X-ray Crystallography and NMR (Yale University, New Haven, (1996).

    Google Scholar 

  27. Jones, T. A., Zhou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and locations of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 176, 307–326 (1997).

    Article  Google Scholar 

  29. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  30. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Bellamy, A. Kolatkar, M. Mathews, J. R. Knowlton and J. D. Phillips for assistance with data collection, and R. Huber for T. maritima genomic DNA. Preliminary sequence data were obtained from The Institute for Genomic Research website at http://www.tigr.org. Sequencing of T.maritima was accomplished with support from the US Department of Energy (DoE). The SSRL Biotechnology Program is supported by the US National Institutes of Health (NIH), National Center for Research Resources, Biomedical Technology Program, and by the DoE Office of Biological and Enivronmental Research. Use of APS was supported by the DoE Basic Energy Sciences, Office of Science. Use of the BioCARS Sector 14 was supported by the NIH National Center for Research Resources. S.A.L. was partially supported by an NIH training grant. Supported by grants from the NSF (to D.F.B.) and NIH (to C.P.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David F. Blair or Christopher P. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, S., Whitby, F., Blair, D. et al. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400, 472–475 (1999). https://doi.org/10.1038/22794

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22794

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing