Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single gene circles in dinoflagellate chloroplast genomes

Abstract

Photosynthetic dinoflagellates are important aquatic primary producers and notorious causes of toxic ‘red tides’. Typical dinoflagellate chloroplasts differ from all other plastids in having a combination of three envelope membranes1 and peridinin-chlorophyll a /c light-harvesting pigments2. Despite evidence of a dinoflagellete satellite DNA containing chloroplast genes3, previous attempts to obtain chloroplast gene sequences have been uniformly unsuccessful. Here we show that the dinoflagellate chloroplast DNA genome structure is unique. Complete sequences of chloroplast ribosomal RNA genes and seven chloroplast protein genes from the dinoflagellate Heterocapsa triquetra reveal that each is located alone on a separate minicircular chromosome: ‘one gene–one circle’. The genes are the most divergent known from chloroplast genomes. Each circle has an unusual tripartite non-coding region (putative replicon origin), which is highly conserved among the nine circles through extensive gene conversion, but is very divergent between species. Several other dinoflagellate species have minicircular chloroplast genes, indicating that this type of genomic organization may have evolved in ancestral peridinean dinoflagellates. Phylogenetic analysis indicates that dinoflagellate chloroplasts are related to chromistan and red algal chloroplasts and supports their origin by secondary symbiogenesis4,5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hybridization of dinoflagellate DNA with chloroplast gene probes.
Figure 2: Structure of psbA contig assembled from 17 sequences (circularized on the right).
Figure 3: Consensus sequence of the 9G-9A-9G region.
Figure 4: Alignment of the variable D2 region.
Figure 5: Hybridization of H.
Figure 6: Neighbour-joining tree of seven concatenated protein sequences.

Similar content being viewed by others

References

  1. Dodge, J. D. Asurvey of chloroplast ultrastructure in Dinophyceae. Phycologia 14, 253–263 (1975).

    Article  Google Scholar 

  2. Jeffrey, S. W. et al. Chloroplast pigment patterns in dinoflagellates. J. Phycol. 111, 374–384 (1975).

    Google Scholar 

  3. Boczar, B. A., Liston, J. & Cattolico, R. A. Characterization of satellite DNA from three marine dinoflagellates: Glenodinium sp. and two members of the toxic genus, Protogonyaulax. Plant Physiol. 97, 613–618 (1991).

    Article  CAS  Google Scholar 

  4. Gibbs, S. P. The chloroplasts of some groups of algae may have evolved from endosymbiotic eukaryotic algae. Ann. NY Acad. Sci. 361, 193–207 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Cavalier-Smith, T. in Biodiversity and Evolution (eds Arai, R., Kato, M. & Doi, Y.) 75–114 (The National Science Museum Foundation, Tokyo, (1995).

    Google Scholar 

  6. Palmer, J. D. & Delwiche, C. F. in Molecular Systematics of Plants II (eds Soltis, D. E., Soltis, P. S. & Doyle, J. J.) 375–409 (Kluwer, Norwall, MA, (1998).

    Book  Google Scholar 

  7. Martin, W. et al. Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393, 162–165 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Douglas, S. E. & Penny, S. L. The plastid genome from the cryptomonad alga, Guillardia theta : complete sequence and conserved synteny groups confirm its common ancestry with red algae. J. Mol. Evol. 48, 236–244 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Morse, D., Salois, P., Markovic, P. & Hastings, J. W. Anuclear encoded form II RuBisCo in dinoflagellates. Science 268, 1622–1624 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Rowan, R., Whitney, S. W., Fowler, A. & Yellowless, D. Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs, encoded by a nuclear multi-gene family. Plant Cell 8, 539–553 (1996).

    Article  CAS  Google Scholar 

  11. Schlunegger, B. & Stutz, E. The Euglena gracilis chloroplast genome: structural features of a DNA region possibly carrying the single origin of DNA replication. Curr. Genet. 8, 629–634 (1984).

    Article  CAS  Google Scholar 

  12. Wu, M., Lou, J. K., Chang, D. Y., Chang, C. H. & Nie, Z. Q. Structure and function of a chloroplast DNA replication origin of Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 83, 6761–6765 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Wakasugi, T. et al. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris : the existence of genes possibly involved in chloroplast division. Proc. Natl Acad. Sci. USA 94, 5967–5972 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Boore, J. L. & Brown, W. M. Complete DNA sequence of the mitochondrial genome of the black chiton, Katharina tunicata. Genetics 138, 423–443 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sugiura, M., Hirose, T. & Sugita, M. Evolution and mechanism of translation in chloroplasts. Annu. Rev. Genet. 32, 437–459 (1998).

    Article  CAS  Google Scholar 

  16. Saunders, G. W., Hill, D. R. A., Sexton, J. P. & Andersen, R. A. Small-subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods. Plant Syst. Evol. (suppl.) 11, 237–259 (1997).

    Article  CAS  Google Scholar 

  17. Jacobs, J. D. et al. Characterisation of two circular plasmids from the marine diatom Cylindrotheca fusiformis : plasmids hybridise to chloroplast and nuclear DNA. Mol. Gen. Genet. 233, 302–310 (1992).

    Article  CAS  Google Scholar 

  18. La Claire II, J. W., Loudenslager, C. M. & Zuccarello, G. C. Characterization of novel extrachromosomal DNA from giant celled marine green algae. Curr. Genet. 34, 204–211 (1998).

    Article  Google Scholar 

  19. Backert, S., Nielsen, B. L. & Börner, T. The mystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci. 2, 477–483 (1987).

    Article  Google Scholar 

  20. Wilson, R. J. M. et al. Complete map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 261, 155–172 (1996).

    Article  CAS  Google Scholar 

  21. Gajadhar, A. A. et al. Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates and ciliates. Mol. Biochem. Parasitol. 45, 147–154 (1991).

    Article  CAS  Google Scholar 

  22. Cavalier-Smith, T. Kingdom protozoa and its 18 phyla. Microbiol. Rev. 57, 953–994 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Waller, R. et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl Acad. Sci. USA 98, 12352–12357 (1998).

    Article  ADS  Google Scholar 

  24. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning, A Laboratory Manual2nd edn (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989).

    Google Scholar 

  25. Smith, S. W. The genetic data environment and expandable GUI for multiple sequence analysis. Comp. Appl. Biosci. 10, 671–675 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Beaton and K. Ishida for valuable discussion and advice; E. Filek for help with plasmid sequencing; X. Wu and E. Chao for advice on PCR; R. G. Hiller for communicating unpublished data; and J. Saldarriaga for H. rotundata and G. grindleyi total DNA. This work was supported by NSERC research grants to B.R.G. and T.C.-S. T.C.-S. thanks the Canadian Institute for Advanced Research for fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Green, B. & Cavalier-Smith, T. Single gene circles in dinoflagellate chloroplast genomes. Nature 400, 155–159 (1999). https://doi.org/10.1038/22099

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22099

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing