Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dimerization and antidepressant recognition at noradrenaline transporter

Abstract

The noradrenaline transporter has a pivotal role in regulating neurotransmitter balance and is crucial for normal physiology and neurobiology1. Dysfunction of noradrenaline transporter has been implicated in numerous neuropsychiatric diseases, including depression and attention deficit hyperactivity disorder2. Here we report cryo-electron microscopy structures of noradrenaline transporter in apo and substrate-bound forms, and as complexes with six antidepressants. The structures reveal a noradrenaline transporter dimer interface that is mediated predominantly by cholesterol and lipid molecules. The substrate noradrenaline binds deep in the central binding pocket, and its amine group interacts with a conserved aspartate residue. Our structures also provide insight into antidepressant recognition and monoamine transporter selectivity. Together, these findings advance our understanding of noradrenaline transporter regulation and inhibition, and provide templates for designing improved antidepressants to treat neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structures of NET complexes.
Fig. 2: Recognition of NE by NET.
Fig. 3: Recognition of antidepressants by NET.
Fig. 4: The NET homodimer interface mediated by cholesterols and lipids.

Similar content being viewed by others

Data availability

The density maps and structure coordinates have been deposited to the Electron Microscopy Data Bank and the PDB under accession numbers EMD-39069 and 8Y94 (NET-apo complex); EMD-39533 and 8YR2 (NET–nisoxetine complex); EMD-39070 and 8Y95 (NET–NE complex); EMD-39067 and 8Y92 (NET–atomoxetine complex); EMD-39064 and 8Y8Z (NET–maprotiline complex); EMD-39068 and 8Y93 (NET–amitriptyline complex); EMD-39065 and 8Y90 (NET–nefopam complex); and EMD-39066 and 8Y91 (NET–nomifensine complex). PDB accessions 5I74, 4M48, 4XP1, 7LIA, 4XNU, 6M0Z, 5I6X, 3F3E, 6KKT and 6M1D were used for structure analysis. Source data are provided with this paper.

References

  1. Mandela, P. & Ordway, G. A. The norepinephrine transporter and its regulation. J. Neurochem. 97, 310–333 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Broer, S. & Gether, U. The solute carrier 6 family of transporters. Br. J. Pharmacol. 167, 256–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pertovaara, A. Noradrenergic pain modulation. Prog. Neurobiol. 80, 53–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Hurlemann, R. et al. Noradrenergic modulation of emotion-induced forgetting and remembering. J. Neurosci. 25, 6343–6349 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pignatelli, M. & Bonci, A. Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective. Neuron 86, 1145–1157 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Navratna, V. & Gouaux, E. Insights into the mechanism and pharmacology of neurotransmitter sodium symporters. Curr. Opin. Struct. Biol. 54, 161–170 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pramod, A. B., Foster, J., Carvelli, L. & Henry, L. K. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol. Aspects Med. 34, 197–219 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Rudnick, G., Kramer, R., Blakely, R. D., Murphy, D. L. & Verrey, F. The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflugers Arch. 466, 25–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Stahl, S. M., Lee-Zimmerman, C., Cartwright, S. & Morrissette, D. A. Serotonergic drugs for depression and beyond. Curr. Drug Targets 14, 578–585 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Lambert, O. & Bourin, M. SNRIs: mechanism of action and clinical features. Expert Rev. Neurother. 2, 849–858 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Hajos, M., Fleishaker, J. C., Filipiak-Reisner, J. K., Brown, M. T. & Wong, E. H. The selective norepinephrine reuptake inhibitor antidepressant reboxetine: pharmacological and clinical profile. CNS Drug Rev. 10, 23–44 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shao, L., Li, W., Xie, Q. & Yin, H. Triple reuptake inhibitors: a patent review (2006–2012). Expert Opin. Ther. Pat. 24, 131–154 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Tu, G. et al. Understanding the polypharmacological profiles of triple reuptake inhibitors by molecular simulation. ACS Chem. Neurosci. 12, 2013–2026 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Jayanthi, L. D., Samuvel, D. J. & Ramamoorthy, S. Regulated internalization and phosphorylation of the native norepinephrine transporter in response to phorbol esters. Evidence for localization in lipid rafts and lipid raft-mediated internalization. J. Biol. Chem. 279, 19315–19326 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Magnani, F., Tate, C. G., Wynne, S., Williams, C. & Haase, J. Partitioning of the serotonin transporter into lipid microdomains modulates transport of serotonin. J. Biol. Chem. 279, 38770–38778 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Luethi, D. et al. Phosphatidylinositol 4,5-bisphosphate (PIP2) facilitates norepinephrine transporter dimerization and modulates substrate efflux. Commun. Biol. 5, 1259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamilton, P. J. et al. PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein. Nat. Chem. Biol. 10, 582–589 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buchmayer, F. et al. Amphetamine actions at the serotonin transporter rely on the availability of phosphatidylinositol-4,5-bisphosphate. Proc. Natl Acad. Sci. USA 110, 11642–11647 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderluh, A. et al. Direct PIP2 binding mediates stable oligomer formation of the serotonin transporter. Nat. Commun. 8, 14089 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seidel, S. et al. Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol. Pharmacol. 67, 140–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coleman, J. A. & Gouaux, E. Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nat. Struct. Mol. Biol. 25, 170–175 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coleman, J. A. et al. Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, D. & Gouaux, E. Illumination of serotonin transporter mechanism and role of the allosteric site. Sci. Adv. 7, eabl3857 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat. Struct. Mol. Biol. 22, 506–508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pidathala, S., Mallela, A. K., Joseph, D. & Penmatsa, A. Structural basis of norepinephrine recognition and transport inhibition in neurotransmitter transporters. Nat. Commun. 12, 2199 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holton, K. L., Loder, M. K. & Melikian, H. E. Nonclassical, distinct endocytic signals dictate constitutive and PKC-regulated neurotransmitter transporter internalization. Nat. Neurosci. 8, 881–888 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheng, M. H. & Bahar, I. Monoamine transporters: structure, intrinsic dynamics and allosteric regulation. Nat. Struct. Mol. Biol. 26, 545–556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, H. et al. Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature 503, 141–145 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tatsumi, M., Groshan, K., Blakely, R. D. & Richelson, E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur. J. Pharmacol. 340, 249–258 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Sorensen, L. et al. Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J. Biol. Chem. 287, 43694–43707 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mason, J. N. et al. Desvenlafaxine succinate identifies novel antagonist binding determinants in the human norepinephrine transporter. J. Pharmacol. Exp. Ther. 323, 720–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Andersen, J. et al. Molecular determinants for selective recognition of antidepressants in the human serotonin and norepinephrine transporters. Proc. Natl Acad. Sci. USA 108, 12137–12142 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bymaster, F. P. et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27, 699–711 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Gregori-Puigjane, E. et al. Identifying mechanism-of-action targets for drugs and probes. Proc. Natl Acad. Sci. USA 109, 11178–11183 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rothman, R. B. & Baumann, M. H. Monoamine transporters and psychostimulant drugs. Eur. J. Pharmacol. 479, 23–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Hill, E. R., Huang, X., Zhan, C. G., Ivy Carroll, F. & Gu, H. H. Interaction of tyrosine 151 in norepinephrine transporter with the 2β group of cocaine analog RTI-113. Neuropharmacology 61, 112–120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jayaraman, K. et al. Dopamine transporter oligomerization involves the scaffold domain, but spares the bundle domain. PLoS Comput. Biol. 14, e1006229 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cheng, M. H., Garcia-Olivares, J., Wasserman, S., DiPietro, J. & Bahar, I. Allosteric modulation of human dopamine transporter activity under conditions promoting its dimerization. J. Biol. Chem. 292, 12471–12482 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Periole, X., Zeppelin, T. & Schiott, B. Dimer Interface of the human serotonin transporter and effect of the membrane composition. Sci. Rep. 8, 5080 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Pidathala, S. et al. Mechanisms of neurotransmitter transport and drug inhibition in human VMAT2. Nature 623, 1086–1092 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Singh, S. K., Piscitelli, C. L., Yamashita, A. & Gouaux, E. A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322, 1655–1661 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, S. et al. Cryo-EM structures of the human cation-chloride cotransporter KCC1. Science 366, 505–508 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zeppelin, T., Ladefoged, L. K., Sinning, S., Periole, X. & Schiott, B. A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition. PLoS Comput. Biol. 14, e1005907 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Loland, C. J., Norregaard, L., Litman, T. & Gether, U. Generation of an activating Zn2+ switch in the dopamine transporter: mutation of an intracellular tyrosine constitutively alters the conformational equilibrium of the transport cycle. Proc. Natl Acad. Sci. USA 99, 1683–1688 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmitt, K. C. et al. Interaction of cocaine-, benztropine-, and GBR12909-like compounds with wild-type and mutant human dopamine transporters: molecular features that differentially determine antagonist-binding properties. J. Neurochem. 107, 928–940 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  ADS  PubMed  Google Scholar 

  55. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z. Wang, Z. Meng and D. Wang for their collaborative efforts; X. Huang, Y. Li and X. Yang for their assistance with the purification, certification and cryo-EM data processing of NET proteins; H. Li for providing the 293GnTi cell line; and Y. Liu for supplying the freestyle medium. The Biacore binding test was performed with support from ShanghaiTech University and guidance from Y. Zhang. The cryo-EM data were collected at the Advanced Center for Electron Microscopy, Shanghai Institute of Materia Medica. We thank all staff at the institution for their assistance with cryo-EM data collection. This work was partially supported by the Lingang Laboratory (grant no. LG-GG-202204-01 to Y.J. and H.E.X.); the National Natural Science Foundation (32171187 to Y.J.; 82121005 to Y.J., H.E.X. and D.Y.; 32130022 to H.E.X.; and 82273985 to D.Y.); the CAS Strategic Priority Research Program (XDB37030103 to H.E.X.); the Shanghai Municipal Science and Technology Major Project (2019SHZDZX02 to H.E.X.); the National Key Basic Research Program of China (2023YFA1800804 to D.Y.); the Shanghai Municipality Science and Technology Development Fund (21JC1401600 to D.Y.); the Program of Shanghai Academic/Technology Research Leader (23XD1400900 to D.Y.); the Hainan Provincial Major Science and Technology Project (ZDKJ2021028 to D.Y.); the China Postdoctoral Science Foundation (2023M731487 to Y.-L.Y.); the Shanghai Post-doctoral Excellence Program (2023018 to Y.-L.Y. and 2022232 to B.P.); and the Shanghai Sailing Program (23YF1460700 to Y.-L.Y. and 22YF1461200 to B.P.).

Author information

Authors and Affiliations

Authors

Contributions

H.Z. designed the expression constructs, purified the NET protein samples, prepared cryo-EM grids, calculated cryo-EM data, built and refined structural models and prepared figures. Y.-L.Y. performed the dimerization assay. Y.-L.Y. and T.Z. performed the neurotransmitter transporter uptake assay and prepared figures. A.D. and C.Z. performed the radiolabelled-ligand-binding study and prepared the corresponding figures. B.P. and S.J. participated in functional studies and data analysis. C.W. participated in cryo-EM data calculation. W.H. and Q.Y. collected cryo-EM data. X.H. analysed structures. D.Y. and M.-W.W. supervised the radiolabelled-ligand-binding study. H.E.X. supervised the project, analysed the structures and modified the manuscript. Y.J. initiated collaborations with H.E.X. and D.Y., supervised the project and wrote the manuscript with inputs from all authors.

Corresponding authors

Correspondence to Dehua Yang, H. Eric Xu or Yi Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Claus Loland, Aravind Penmatsa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Effects of NET mutations on the binding affinity of NE and antidepressants.

a, Binding of nisoxetine to NET assembled in nanodiscs containing MSP1D1 and NET expressed on cell membranes of HEK293 cells (whole-cell) in competition with [3H]-nisoxetine. Assays were conducted with four independent biological replicates (n = 4). The unpaired two-tailed t-test was used to determine the statistical difference (P = 0.0533). b, Binding of six depressants in competition with [3H]-nisoxetine. Binding data were analysed using a three-parameter logistic equation to determine pIC50 values. Data were generated and graphed as means ± s.e.m. of three independent biological replicates (n = 3), except for WT for nisoxetine, WT and S420A for maprotiline, which were performed with four independent biological replicates (n = 4).

Source Data

Extended Data Fig. 2 Cryo-EM structural determination of human NET in the apo state and bound to the native substrate NE or to inhibitors.

ae, Overall structures of atomoxetine-bound (a), maprotiline-bound (b), apo (c), NE-bound (d) and nomifensine-bound (e) NET dimers. The representative density maps of TM1, TM6, apo NET, and atomoxetine/maprotiline/NE/nomifensine-bound NET dimers are shown. f,g, The two protomers of the NET–amitriptyline (f) and NET–nefopam (g) dimer are asymmetric. The protomer containing amitriptyline or nefopam shows an outward-open state and exhibits better density, whereas the other protomer adopts an occluded conformation and lacks the density of inhibitors.

Extended Data Fig. 3 Representative EM densities of NET.

a, Nisoxetine–NET dimer transmembrane helices and EM densities at a contour level of 0.30. b, Nisoxetine and EM densities at a contour level of 0.32. c, Cholesterols surround NET except for the dimer interface, EM densities at a contour level of 0.18. d, Lipid and cholesterols at the upper layer dimer interface, EM densities at a contour level of 0.20. e, Lipid and cholesterols at the lower layer dimer interface, EM densities at a contour level of 0.20.

Extended Data Fig. 4 Structural comparisons of NET with SERT and dDAT in outward-open states.

a, Structural comparisons of the nisoxetine–NET, paroxetine–SERT (PDB: 5I6X) and nortriptyline–dDAT (PDB: 4M48). The structures were superimposed onto NET (residues P55–E597) and its homologues. b, Structural comparisons of the extracellular segments of TMs 10–12 in NET, SERT and dDAT. The directional movements of TMs 10–12 in NET relative to that in SERT are indicated by black arrows. c, Comparisons of EL2, EL4 and EL6 among NET, SERT and dDAT. The longer EL2 of NET relative to SERT and dDAT protrudes towards EL4, as indicated by the black arrow. d, The NET structure shows an extended C terminus relative to SERT and dDAT. This extended C terminus contacts the C-terminal latch, the cytoplasmic ends of TM10 and TM11, and IL5, thus sealing the cytoplasmic ends of TMs 10–12.

Extended Data Fig. 5 Effects of alanine mutations on the transport activity of NET in response to NE and antidepressants.

ac, The mutated residues in subsite A (a), subsite B (b) and subsite C (c) of NET were tested. Data were normalized to the response of wild-type NET. The assays were conducted with three independent biological replicates (n = 3). Each data point presents mean ± s.e.m.

Source Data

Extended Data Fig. 6 Comparisons of the recognition of substrates and antidepressants for NET and its homologues.

a, Sequence alignment of residues in TM1, TM3, TM6 and TM8 that constitute the substrate- or inhibitor-binding pocket of NET. bd, Structural comparisons of NE–NET with DA–dDAT (b; PDB: 4XP1), 5-HT–SERT (c; PDB: 7LIA) and NE–dDAT (NET-like) (d; PDB: 6M0Z). e, Comparison of binding poses for nisoxetine bound to NET and dDAT (PDB: 4XNU). f,g, Comparison of the binding pose of nisoxetine in NET and citalopram in SERT (f; PDB: 5I74), as well as amitriptyline in NET and nortriptyline in dDAT (g; PDB: 4M48).

Extended Data Fig. 7 Antidepressant selectivity for MATs.

a, The non-conserved residues in the central ligand-binding site among MATs. The SERT-like (F72Y/V148I/G149A) and DAT-like mutations of NET (A145S/Y151F) were highlighted in red. b, Effects of SERT-like NET mutations on the binding affinity of maprotiline and nomifensine. Data were generated and graphed as means ± s.e.m. of three independent biological replicates (n = 3). c, Effects of DAT-like NET mutations on the binding affinity of nisoxetine, atomoxetine, amitriptyline and nefopam. Data were generated and graphed as means ± s.e.m. of three independent biological replicates (n = 3), except for WT and Y151F for amitriptyline, which were performed in five independent biological replicates (n = 5). d, Structure superposition of maprotiline- and nomifensine-bound NET. e, Structure superposition of nisoxetine-, atomoxetine-, amitriptyline- and nefopam-bound NET.

Source Data

Extended Data Fig. 8 The unique homodimer of NET.

ac, Homodimer interfaces of transporters with reported structures, including bacterial leucine transporter (LeuT) (a; PDB: 3F3E), solute carrier family 12 (potassium/chloride transporter) member 4 (SLC12A4) (b; PDB: 6KKT) and sodium-dependent neutral amino acid transporter B(0)AT1 (solute carrier family 6 member 19; SLC6A19) (c; PDB: 6M1D). d, Sequence alignment of residues in TM3, TM4, TM9 and TM12 at the homodimer interface of NET. e, Sequence conservation between three monoamine transporters (NET, DAT and SERT) in cartoon representation. Conservation is coloured as indicated. Higher numbers denote higher conservation.

Extended Data Fig. 9 Binding details of cholesterols and lipids with residues at the homodimer interface of NET.

a, The two PIs (phosphatidylinositol) and six cholesterol molecules (CLRs) located at the upper layer interface from the extracellular view. b, The six cholesterols, two PIs, two phosphatidylinositol 4,5-bisphosphate (PIP2) packed at the lower layer interface from the bottom view. ch, Detailed interactions between specific CLR or lipid with residues at the homodimer interface of NET are as follows: CLRs and PI (c), PI #1 and CLR #2 (d), CLR #1 and CLR #3 located in the upper layer (e), as well as CLRs, PI and PIP2 (f), PI #2 and CLR #4 (g), CLR #5 and PIP2 located in the lower layer (h). Cholesterol (dodger blue), PI (medium purple), and PIP2 (deep sky blue) are represented in ball-and-stick format (blue). The side chains of residues in two protomers of NET (cyan and purple) are shown with sticks.

Extended Data Table 1 Cryo-EM data collection, refinement and validation statistics

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1–3 and Supplementary Figures 1–5.

Reporting Summary

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yin, YL., Dai, A. et al. Dimerization and antidepressant recognition at noradrenaline transporter. Nature (2024). https://doi.org/10.1038/s41586-024-07437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-024-07437-6

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing