Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy

Abstract

Recent years have witnessed the introduction of spatiotemporal spectroscopy for the characterization of catalysts at work at previously unattainable resolution and sensitivity. They have revealed that heterogeneous catalysts are more heterogeneous than often expected. Dynamic changes in the nature of active sites, such as their distribution and accessibility, occur both between and within particles. Scientists now have micro- and nanospectroscopic methods at hand to improve the understanding of catalyst heterogeneities and exploit them in catalyst design. Here we review the latest developments within this lively field. The trends include detection of single particles or molecules, super-resolution imaging, the transition from two- to three-dimensional imaging, selective staining, integration of spectroscopy with electron microscopy or scanning probe methods, and measuring under realistic reaction conditions. Such experimental approaches change the hitherto somewhat static picture of heterogeneous catalysis into one that acknowledges that catalysts behave almost like living objects — explaining why many characterization methods from the life sciences are being incorporated into catalysis research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamics of individual catalyst particles and related heterogeneities in space and time.
Figure 2: Chemical imaging methods that are available or will become available in the future (in italics), for investigating individual catalyst particles.
Figure 3: Selected literature examples of the nature and distribution of active sites within structured porous oxides.
Figure 4: Selected literature examples on active-site accessibility within structured porous oxides.
Figure 5: Selected literature examples on active-site accessibility within structured porous oxides.
Figure 6: Selected literature examples on the nature of active sites within supported metal (oxide) nanoparticles.
Figure 7: Selected literature examples of active-site distribution within supported metal (oxide) nanoparticles.
Figure 8: Selected literature examples on active-site distribution within supported metal (oxide) nanoparticles.

Similar content being viewed by others

References

  1. Ertl, G., Knözinger, H., Schüth, F. & Weitkamp, J. (eds) Handbook of Heterogeneous Catalysis 2nd edn (Wiley-VCH, 2008).

    Book  Google Scholar 

  2. Hagen, J. Industrial Catalysis: A Practical Approach (Wiley-VCH, 1999).

    Google Scholar 

  3. Bañares, M. A. Operando spectroscopy: the knowledge bridge to assessing structure-performance relationships in catalyst nanoparticles. Adv. Mater. 23, 5293–5301 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Thomas, J. M. Design, synthesis, and in situ characterization of new solid catalysts. Angew. Chem. Int. Ed. 38, 3589–3628 (1999).

    Article  CAS  Google Scholar 

  5. Topsøe, H. Developments in operando studies and in situ characterization of heterogeneous catalysts. J. Catal. 216, 155–164 (2003).

    Article  CAS  Google Scholar 

  6. Weckhuysen, B. M. (ed.) In Situ Spectroscopy of Catalysts 1st edn (American Scientific, 2004).

    Google Scholar 

  7. Tao, F. & Salmeron, M. In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171–173 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Weckhuysen, B. M. Recent advances in the in-situ characterization of heterogeneous catalysts. Chem. Soc. Rev. 39, 4557–4559 (2010).

    Article  CAS  Google Scholar 

  9. Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  10. Somorjai, G. A. & Li, Y. Introduction to Surface Chemistry and Catalysis 2nd edn (Wiley, 2010).

    Google Scholar 

  11. Tao, F. et al. Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322, 932–934 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Engelkamp, H. et al. Do enzymes sleep and work? Chem. Commun. 935–940 (2006).

  13. Xu, W., Kong, J. S. & Chen, P. Single-molecule kinetic theory of heterogeneous and enzyme catalysis. J. Phys. Chem. C 113, 2393–2404 (2009).

    Article  CAS  Google Scholar 

  14. Fischer, R. S., Wu, Y., Kanchanawong, P., Shroff, H. & Waterman, C. M. Microscopy in 3D: a biologist's toolbox. Trends Cell Biol. 21, 682–691 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conchello, J-A. & Lichtman, J. W. Optical sectioning microscopy. Nature Methods 2, 920–931 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nature Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  Google Scholar 

  17. Urakawa, A. & Baiker, A. Space-resolved profiling relevant in heterogeneous catalysis. Top. Catal. 52, 1312–1322 (2009).

    Article  CAS  Google Scholar 

  18. Weckhuysen, B. M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew. Chem. Int. Ed. 48, 4910–4943 (2009).

    Article  CAS  Google Scholar 

  19. Beale, A. M., Jacques, S. D. M. & Weckhuysen, B. M. Chemical imaging of catalytic solids with synchrotron radiation. Chem. Soc. Rev. 39, 4656–4672 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. De Cremer, G., Sels, B. F., De Vos, D. E., Hofkens, J. & Roeffaers, M. B. J. Fluorescence micro(spectro)scopy as a tool to study catalytic materials in action. Chem. Soc. Rev. 39, 4703–4717 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Michaelis, J. & Bräuchle, C. Reporters in the nanoworld: diffusion of single molecules in mesoporous materials. Chem. Soc. Rev. 39, 4731–4740 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Grunwaldt, J.-D. & Schroer, C. G. Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales. Chem. Soc. Rev. 39, 4741–4753 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, H., Kosuda, K. M., Van Duyne, R. P. & Stair, P. C. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem. Soc. Rev. 39, 4820–4844 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Chmelik, C. & Kärger, J. In situ study on molecular diffusion phenomena in nanoporous catalytic solids. Chem. Soc. Rev. 39, 4864–4884 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Schoonheydt, R. A. UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts. Chem. Soc. Rev. 39, 5051–5066 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Lysova, A. A. & Koptyug, I. V. Magnetic resonance imaging methods for in situ studies in heterogeneous catalysis. Chem. Soc. Rev. 39, 4585–4601 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Roeffaers, M. B. J. et al. Single-molecule fluorescence spectroscopy in (bio)catalysis. Proc. Natl Acad. Sci. USA 104, 12603–12609 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmitz, T. A., Gamez, G., Setz, P. D., Zhu, L. & Zenobi, R. Towards nanoscale molecular analysis at atmospheric pressure by a near-field laser ablation ion trap/time-of-flight mass spectrometer. Anal. Chem. 80, 6537–6544 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Altelaar, A. F. M., Luxembourg, S. L., McDonnell, L. A., Piersma, S. R. & Heeren, R. M. A. Imaging mass spectrometry at cellular length scales. Nature Protoc. 2, 1185–1196 (2007).

    Article  CAS  Google Scholar 

  30. McDonnell, L. A. & Heeren, R. M. A. Imaging mass spectrometry. Mass Spectrom. Rev. 26, 606–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Amantonico, A., Oh, J. Y., Sobek, J., Heinemann, M. & Zenobi, R. Mass spectrometric method for analyzing metabolites in yeast with single cell sensitivity. Angew. Chem. Int. Ed. 47, 5382–5385 (2008).

    Article  CAS  Google Scholar 

  32. Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Tachikawa, T., Yamashita, S. & Majima, T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 133, 7197–7204 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Tachikawa, T., Wang, N., Yamashita, S., Cui, S-C. & Majima, T. Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angew. Chem. Int. Ed. 49, 8593–8597 (2010).

    Article  CAS  Google Scholar 

  35. Tachikawa, T. & Majima, T. Single-molecule fluorescence imaging of TiO2 photocatalytic reactions. Langmuir 25, 7791–7802 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Tachikawa, T. & Majima, T. Photocatalytic oxidation surfaces on anatase TiO2 crystal revealed by single-particle chemiluminescence imaging. Chem. Commun. 48, 3300–3302 (2012).

    Article  CAS  Google Scholar 

  37. Parvulescu, A. N. et al. Chemical imaging of catalyst deactivation during the conversion of renewables at the single particle level: etherification of biomass-based polyols with alkenes over H-beta zeolites. J. Am. Chem. Soc. 132, 10429–10439 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Domke, K. F. et al. Tracing catalytic conversion on single zeolite crystals in 3D with nonlinear spectromicroscopy. J. Am. Chem. Soc. 134, 1124–1129 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Mores, D. et al. Core–shell H-ZSM-5/silicalite-1 composites: Brønsted acidity and catalyst deactivation at the individual particle level. Phys. Chem. Chem. Phys. 13, 15985–15994 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Aramburo, L. R. et al. X-ray imaging of zeolite particles at the nanoscale: influence of steaming on the state of aluminum and the methanol-to-olefin reaction. Angew. Chem. Int. Ed. 51, 3616–3619 (2012).

    Article  CAS  Google Scholar 

  41. Aramburo, L. R. et al. Styrene oligomerization as a molecular probe reaction for Brønsted acidity at the nanoscale. Phys. Chem. Chem. Phys. 19, 6967–6973 (2012).

    Article  CAS  Google Scholar 

  42. Jeong, N. C., Lim, H., Cheong, H. & Yoon, K. B. Distribution pattern of length, length uniformity, and density of TiO32− quantum wires in an ETS-10 crystal revealed by laser-scanning confocal polarized micro-Raman spectroscopy. Angew. Chem. Int. Ed. 50, 8697–8701 (2011).

    Article  CAS  Google Scholar 

  43. Tachikawa, T., Yamashita, S. & Majima, T. Probing photocatalytic active sites on a single titanosilicate zeolite with a redox-responsive fluorescent dye. Angew. Chem. Int. Ed. 49, 432–435 (2009).

    Article  CAS  Google Scholar 

  44. Buurmans, I. L. C. et al. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining. Nature Chem. 3, 862–867 (2011).

    Article  CAS  Google Scholar 

  45. Buurmans, I. L. C. et al. Staining of fluid catalytic cracking catalysts: localizing Brønsted acidity within a single catalyst particle. Chem. Eur. J. 18, 1094–1101 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Karreman, M. A. et al. Integrated laser and electron microscopy correlates structure of fluid catalytic cracking particles to Brønsted acidity. Angew. Chem. Int. Ed. 51, 1428–1431 (2012).

    Article  CAS  Google Scholar 

  47. Ruiz-Martínez, J. et al. Microspectroscopic insight into the deactivation process of individual cracking catalyst particles with basic sulfur components. Appl. Catal. A 419420, 84–94 (2012).

    Article  CAS  Google Scholar 

  48. Kox, M. H. F., Stavitski, E. & Weckhuysen, B. M. Nonuniform catalytic behavior of zeolite crystals as revealed by in situ optical microspectroscopy. Angew. Chem. Int. Ed. 46, 3652–3655 (2007).

    Article  CAS  Google Scholar 

  49. Kox, M. H. F. et al. Label-free chemical imaging of catalytic solids by coherent anti-Stokes Raman scattering and synchrotron-based infrared microscopy. Angew. Chem. Int. Ed. 48, 8990–8994 (2009).

    Article  CAS  Google Scholar 

  50. Stavitski, E., Kox, M. H. F., Swart, I., de Groot, F. M. F. & Weckhuysen, B. M. In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals. Angew. Chem. Int. Ed. 47, 3543–3547 (2008).

    Article  CAS  Google Scholar 

  51. Domke, K. F. et al. Host-guest geometry in pores of zeolite ZSM-5 spatially resolved with multiplex CARS spectromicroscopy. Angew. Chem. Int. Ed. 51, 1343–1347 (2012).

    Article  CAS  Google Scholar 

  52. Van der Veen, M. A. et al. Mapping of the organization of p-nitroaniline in SAPO-5 by second-harmonic generation microscopy. Phys. Chem. Chem. Phys. 12, 10688–10692 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Van der Veen, M. A., Sels, B. F., De Vos, D. E. & Verbiest, T. Localization of p-nitroaniline chains inside zeolite ZSM-5 with second-harmonic generation microscopy. J. Am. Chem. Soc. 132, 6630–6631 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Van der Veen, M. A., Valev, V. K., Verbiest, T. & De Vos, D. E. In situ orientation-sensitive observation of molecular adsorption on a liquid/zeolite interface by second-harmonic generation. Langmuir 25, 4256–4261 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Van der Veen, M. A., De Roeck, M., Vankelecom, I. F. J., De Vos, D. E. & Verbiest, T. The use of second-harmonic generation to study diffusion through films under a liquid phase. ChemPhysChem 11, 870–874 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Roeffaers, M. B. J. et al. Relating pore structure to activity at the subcrystal level for ZSM-5: An electron backscattering diffraction and fluorescence microscopy study. J. Am. Chem. Soc. 130, 13516–13517 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Roeffaers, M. B. J. et al. Space- and time-resolved visualization of acid catalysis in ZSM-5 crystals by fluorescence microscopy. Angew. Chem. Int. Ed. 46, 1706–1709 (2007).

    Article  CAS  Google Scholar 

  58. Karwacki, L., Stavitski, E., Kox, M. H. F., Kornatowski, J. & Weckhuysen, B. M. Intergrowth structure of zeolite crystals as determined by optical and fluorescence microscopy of the template-removal process. Angew. Chem. Int. Ed. 46, 7228–7231 (2007).

    Article  CAS  Google Scholar 

  59. Karwacki, L. et al. Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. Nature Mater. 8, 959–965 (2009).

    Article  CAS  Google Scholar 

  60. Karwacki, L. et al. Unified internal architecture and surface barriers for molecular diffusion of microporous crystalline aluminophosphates. Angew. Chem. Int. Ed. 49, 6790–6794 (2010).

    Article  CAS  Google Scholar 

  61. Qian, Q., Mores, D., Kornatowski, J. & Weckhuysen, B. M. Template removal processes within individual micron-sized SAPO-34 crystals: effect of gas atmosphere and crystal size. Microporous Mesoporous Mater. 146, 28–35 (2011).

    Article  CAS  Google Scholar 

  62. Karwacki, L. & Weckhuysen, B. M. New insights in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-VIS/fluorescence micro-spectroscopy study. Phys. Chem. Chem. Phys. 13, 3681–3685 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Seebacher, C. et al. Visualization of mesostructures and organic guest inclusion in molecular sieves with confocal microscopy. Adv. Mater. 13, 1374–1377 (2001).

    Article  CAS  Google Scholar 

  64. Roeffaers, M. B. J. et al. Morphology of large ZSM-5 crystals unraveled by fluorescence microscopy. J. Am. Chem. Soc. 130, 5763–5772 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Zürner, A., Kirstein, J., Döblinger, M., Bräuchle, C. & Bein, T. Visualizing single-molecule diffusion in mesoporous materials. Nature 450, 705–709 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Kirstein, J. et al. Exploration of nanostructured channel systems with single-molecule probes. Nature Mater. 6, 303–310 (2007).

    Article  CAS  Google Scholar 

  67. Jung, C. et al. Diffusion of oriented single molecules with switchable mobility in networks of long unidimensional nanochannels. J. Am. Chem. Soc. 130, 1638–1648 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Lebold, T. et al. Tuning single-molecule dynamics in functionalized mesoporous silica. Chem. Eur. J. 15, 1661–1672 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Lebold, T., Michaelis, J. & Bräuchle, C. The complexity of mesoporous silica nanomaterials unravelled by single molecule microscopy. Phys. Chem. Chem. Phys. 13, 5017–5033 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. De Cremer, G. et al. High-resolution single-turnover mapping reveals intraparticle diffusion limitation in Ti-MCM-41-catalyzed epoxidation. Angew. Chem. Int. Ed. 49, 908–911 (2010).

    Article  CAS  Google Scholar 

  71. De Cremer, G. et al. The influence of diffusion phenomena on catalysis: a study at the single particle level using fluorescence microscopy. Catal. Today 157, 236–242 (2010).

    Article  CAS  Google Scholar 

  72. Roeffaers, M. B. J. et al. Super-resolution reactivity mapping of nanostructured catalyst particles. Angew. Chem. Int. Ed. 48, 9285–9289 (2009).

    Article  CAS  Google Scholar 

  73. Tzoulaki, D. et al. Assessing molecular transport properties of nanoporous materials by interference microscopy: remarkable effects of composition and microstructure on diffusion in the silicoaluminophosphate zeotype STA-7. J. Am. Chem. Soc. 132, 11665–11670 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Chmelik, C. et al. Adsorption and diffusion of alkanes in CuBTC crystals investigated using infra-red microscopy and molecular simulations. Micropor. Mesopor. Mater. 117, 22–32 (2009).

    Article  CAS  Google Scholar 

  75. Chmelik, C. et al. Exploring the nature of surface barriers on MOF Zn(tbip) by applying IR microscopy in high temporal and spatial resolution. Micropor. Mesopor. Mater. 129, 340–344 (2010).

    Article  CAS  Google Scholar 

  76. Hibbe, F., Marthala, V. R. R., Chmelik, C., Weitkamp, J. & Kärger, J. Micro-imaging of transient guest profiles in nanochannels. J. Chem. Phys. 135, 184201 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Heinke, L. et al. Assessing guest diffusivities in porous hosts from transient concentration profiles. Phys. Rev. Lett. 102, 065901 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Heinke, L. et al. Application of interference microscopy and IR microscopy for characterizing and investigating mass transport in nanoporous materials. Chem. Eng. Technol. 30, 995–102 (2007).

    Article  CAS  Google Scholar 

  79. Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen, C. H. & Groen, J. C. Hierarchichal zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 37, 2530–2542 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Sommer, L. et al. Optical investigation of the intergrowth structure and accessibility of Brønsted acid sites in etched SSZ-13 zeolite crystals by confocal fluorescence microscopy. Langmuir 26, 16510–16516 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Kox, M. H. F. et al. Visualizing the crystal structure and locating catalytic activity of micro- and mesoporous ZSM-5 zeolite crystals using in-situ optical and fluorescence microscopy. Chem. Eur. J. 14, 1718–1725 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Aramburo, L. R. et al. Porosity, acidity and reactivity of dealuminated zeolite ZSM-5 at the single particle level: influence of the zeolite architecture. Chem. Eur. J. 17, 13773–13781 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, P. et al. Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 39, 4560–4570 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Xu, W., Kong, J. S. & Chen, P. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level. Phys. Chem. Chem. Phys. 11, 2767–2778 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Ochoa, M. A., Zhou, X., Chen, P. & Loring, R. F. Interpreting single turnover catalysis measurements with constrained mean dwell times. J. Chem. Phys. 135, 174509 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Xu, W., Kong, J. S., Yeh, Y. T. E. & Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nature Mater. 7, 992–996 (2008).

    Article  CAS  Google Scholar 

  87. Chen, P., Xu, W., Zhou, X., Panda, D. & Kalininskiy, A. Single-nanoparticle catalysis at single-turnover resolution. Chem. Phys. Lett. 470, 151–157 (2009).

    Article  CAS  Google Scholar 

  88. Zhou, X., Xu, W., Liu, G., Panda, D. & Chen, P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J. Am. Chem. Soc. 132, 138–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Zhou, X. et al. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nature Nanotech. 7, 237–241 (2012).

    Article  CAS  Google Scholar 

  90. Wang, N., Tachikawa, T. & Majima, T. Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chem. Sci. 2, 891–900 (2011).

    Article  CAS  Google Scholar 

  91. Tedsree, K. et al. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nature Nanotech. 6, 302–307 (2011).

    Article  CAS  Google Scholar 

  92. Tang, M. L., Liu, N., Dionne, J. A. & Alivisatos, A. P. Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals. J. Am. Chem. Soc. 133, 13220–13223 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Novo, C., Funston, A. M., Gooding, A. K. & Mulvaney, P. Electrochemical charging of single gold nanorods. J. Am. Chem. Soc. 131, 14664–14666 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Rodríguez-Fernández, J. et al. Spectroscopy, imaging and modeling of individual gold decahedra. J. Phys. Chem. C 113, 18623–18631 (2009).

    Article  CAS  Google Scholar 

  95. Novo, C., Funston, A. M. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nature Nanotech. 3, 598–602 (2008).

    Article  CAS  Google Scholar 

  96. Harvey, C. E., van Schrojenstein Lantman, E. M., Mank, A. J. G. & Weckhuysen, B. M. An integrated AFM–Raman instrument for studying heterogeneous catalytic systems: a first showcase. Chem. Commun. 48, 1742–1744 (2012).

    Article  CAS  Google Scholar 

  97. Espinosa-Alonso, L., Beale, A. M. & Weckhuysen, B. M. Profiling physicochemical changes within catalyst bodies during preparation: new insights from invasive and noninvasive microspectroscopic studies. Acc. Chem. Res. 43, 1279–1288 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Espinosa-Alonso, L. et al. Magnetic resonance imaging studies on catalyst impregnation processes: discriminating metal ion complexes within millimeter-sized γ-Al2O3 catalyst bodies. J. Am. Chem. Soc. 131, 6525–6534 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Espinosa-Alonso, L. et al. Tomographic energy dispersive diffraction imaging to study the genesis of Ni nanoparticles in 3D within γ-Al2O3 catalyst bodies. J. Am. Chem. Soc. 131, 16932–16938 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Zandbergen, M. W., Jacques, S. D. M., Weckhuysen, B. M. & Beale, A. M. Probing within catalyst bodies by diagonal offset Raman spectroscopy. Angew. Chem. Int. Ed. 51, 957–960 (2012).

    Article  CAS  Google Scholar 

  101. Bergwerff, J. A., Lysova, A. A., Espinosa-Alonso, L., Koptyug, I. V. & Weckhuysen, B. M. Probing the transport of paramagnetic complexes inside catalyst bodies in a quantitative manner by magnetic resonance imaging. Angew. Chem. Int. Ed. 46, 7224–7227 (2007).

    Article  CAS  Google Scholar 

  102. Beale, A. M., Jacques, S. D. M., Bergwerff, J. A., Barnes, P. & Weckhuysen, B. M. Tomographic energy dispersive diffraction imaging as a tool to profile in three dimensions the distribution and composition of metal oxide species in catalyst bodies. Angew. Chem. Int. Ed. 46, 8832–8835 (2007).

    Article  CAS  Google Scholar 

  103. O'Brien, M. G. et al. Active phase evolution in single Ni/Al2O3 methanation catalyst bodies studied in real time using combined μ-XRD-CT and μ-absorption-CT. Chem. Sci. 3, 509–523 (2011).

    Article  Google Scholar 

  104. Jacques, S. D. M. et al. Dynamic X-ray diffraction computed tomography reveals real-time insight into catalyst active phase evolution. Angew. Chem. Int. Ed. 50, 10148–10152 (2011).

    Article  CAS  Google Scholar 

  105. Grunwaldt, J-D. et al. Catalysts at work: from integral to spatially resolved X-ray absorption spectroscopy. Catal. Today 145, 267–278 (2009).

    Article  CAS  Google Scholar 

  106. Drake, I. J. et al. An in situ cell for characterization of solids by soft x-ray absorption. Rev. Sci. Instrum. 75, 3242–3247 (2004).

    Article  CAS  Google Scholar 

  107. De Smit, E. et al. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature 456, 222–226 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Zhou, J. et al. Nanoscale chemical imaging and spectroscopy of individual RuO2 coated carbon nanotubes. Chem. Commun. 46, 2778–2780 (2010).

    Article  CAS  Google Scholar 

  109. Tada, M. et al. μ-XAFS of a single particle of a practical NiOx/Ce2Zr2Oy catalyst. Phys. Chem. Chem. Phys. 13, 14910–14913 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Meirer, F. et al. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Rad. 18, 773–781 (2011).

    Article  CAS  Google Scholar 

  111. Van Schrojenstein Lantman, E. M. et al. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nature Nanotech. 7, 583–586 (2012).

    Article  CAS  Google Scholar 

  112. Stavitski, E., Kox, M. H. F. & Weckhuysen, B. M. Revealing shape selectivity and catalytic activity trends within the pores of H-ZSM-5 crystals by time- and space-resolved optical and fluorescence microspectroscopy. Chem. Eur. J. 13, 7057–7065 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Chmelik, C. et al. Mass transfer in a nanoscale material enhanced by an opposing flux. Phys. Rev. Lett. 104, 085902 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. O'Brien, M. G. et al. Active phase evolution in single Ni/Al2O3 methanation catalyst bodies studied in real time using combined μ-XRD-CT and μ-absorption-CT. Chem. Sci. 3, 509–523 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. M. Ruppert (Technical University Lodz) for the design of Figs 1 and 2, and P. C. A. Bruijnincx and J. P. Hofmann (Utrecht University) for discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert M. Weckhuysen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buurmans, I., Weckhuysen, B. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nature Chem 4, 873–886 (2012). https://doi.org/10.1038/nchem.1478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing