Solid-state lasers articles within Nature Communications

Featured

  • Article
    | Open Access

    Photonic time crystal refers to a material whose dielectric properties oscillate in time. Here the authors theoretically show such behaviour in the excitonic insulator candidate Ta2NiSe5 under optical excitation and use it to explain the enhanced THz reflectivity recently observed in pump-probe experiments

    • Marios H. Michael
    • , Sheikh Rubaiat Ul Haque
    •  & Eugene Demler
  • Article
    | Open Access

    Ultrahigh-efficiency and low-threshold yet tunable and compact laser devices are at the base of new functional devices. Here the authors harness a new temperature degree of freedom to realize a tunable photon-phonon collaboratively pumped laser.

    • Yu Fu
    • , Fei Liang
    •  & Yan-Feng Chen
  • Article
    | Open Access

    The authors demonstrate on-the-fly reconfigurable optical trapping of organic polariton condensates which are delocalised over a macroscopic distance from the excitation region, holding great potential for future work on polaritonic lattice physics.

    • Mengjie Wei
    • , Wouter Verstraelen
    •  & Hamid Ohadi
  • Article
    | Open Access

    Here the authors demonstrate chip-scale high-peak-power lasers by vertical integration of semiconductor and solid state laser gain mediums to reach the same maturity level as existing semiconductor lasers, which are suitable for miniaturization and cost-effective mass production.

    • Jianglin Yue
    • , Kenji Tanaka
    •  & Masanao Kamata
  • Article
    | Open Access

    Achieving high output powers in dual-comb sources is important for possible applications like deep UV high resolution spectroscopy. Here the authors demonstrate a fully passive scheme of generating a set of high-power dual-combs from a thin-disc gain medium.

    • Kilian Fritsch
    • , Tobias Hofer
    •  & Oleg Pronin
  • Article
    | Open Access

    Constructing ultraviolet lasing is of great significance for basic research and medical use. Here the authors present a strategy for generating ultraviolet lasing through a tandem upconversion process with ultralarge anti-Stokes shift (1260 nm).

    • Tianying Sun
    • , Bing Chen
    •  & Feng Wang
  • Article
    | Open Access

    Diamond is a promising host material for color-center photon source. Here the authors provide the experimental evidence of lasing in (NV−) centers in diamond. Through a rational fine-tuning of the pump condition they decrease the photoionization, ultimately increasing the laser efficiency.

    • Alexander Savvin
    • , Alexander Dormidonov
    •  & Viktor Vins
  • Article
    | Open Access

    Though the goal of current organic solid-state laser research remains the realization of electrically pumped lasing, identifying organic semiconductors with ideal properties remains a challenge. Here, the authors report a computational strategy for screening electrical pumping lasing molecules.

    • Qi Ou
    • , Qian Peng
    •  & Zhigang Shuai
  • Article
    | Open Access

    Currently, it is difficult to reach high momenta with narrow energy resolution via laser-based angle-resolved photoemission spectroscopy (ARPES). Here, Sie et al. develop a time-resolved XUV based ARPES setup which can access the first Brillouin zone of all materials with narrow energy resolution.

    • Edbert J. Sie
    • , Timm Rohwer
    •  & Nuh Gedik
  • Article
    | Open Access

    Ultrafast lasers with multi-gigahertz repetition rates are desirable for applications requiring high sampling rates or resolvable frequency comb lines. Here, Mayer et al. use cascading of quadratic nonlinearities to passively modelock a femtosecond solid-state laser at a repetition rate of 10 GHz.

    • A. S. Mayer
    • , C. R. Phillips
    •  & U. Keller
  • Article
    | Open Access

    In graphene, electrons possess zero effective mass in proximity to the Dirac point, an unusual feature that could trigger the development of novel photonic devices. Here, the authors combine graphene quantum dots with two graphene layers and observe laser action with ultralow threshold.

    • Golam Haider
    • , Rini Ravindranath
    •  & Yang-Fang Chen