Electrical and electronic engineering articles within Nature Communications

Featured

  • Article
    | Open Access

    Timely detection of moving events in a scene plays a vital role in autonomous robots. In this work, authors develop a method to detect moving events from lidar points, achieving a temporal resolution in the order of microseconds.

    • Huajie Wu
    • , Yihang Li
    •  & Fu Zhang
  • Article
    | Open Access

    Metasurfaces show variable scattering with frequency sequence. This frequency-hopping response breaks a conventional linear frequency concept and markedly expands available frequency channels from a linear number to its factorial number.

    • Hiroki Takeshita
    • , Ashif Aminulloh Fathnan
    •  & Hiroki Wakatsuchi
  • Article
    | Open Access

    The simultaneous scaling down of the channel length and gate length of 2D transistors remains challenging. Here, the authors report a self-alignment process to fabricate vertical MoS2 transistors with sub-1 nm gate length and sub−50 nm channel length, exhibiting on-off ratios over 105 and on-state currents of 250 μA/μm at 4 V bias.

    • Liting Liu
    • , Yang Chen
    •  & Yuan Liu
  • Article
    | Open Access

    Although artificial skins can facilitate the healing of damaged skin, the restoration of tactile functions remain a challenge. Here, Kang et al. report an artificial skin with an implantable tactile sensor that can simultaneously replace the tactile function by nerve stimulation and promote skin regeneration.

    • Kyowon Kang
    • , Seongryeol Ye
    •  & Youngmee Jung
  • Article
    | Open Access

    Designing efficient artificial neural network circuit architectures for optimal information routing remains a challenge. Here, the authors propose “Mosaic", the first demonstration of on-chip in-memory spike routing using memristors, optimized for small-world graphs prevalent in mammalian brains, offering orders of magnitude reduction in routing events compared to current approaches.

    • Thomas Dalgaty
    • , Filippo Moro
    •  & Melika Payvand
  • Article
    | Open Access

    Designing memristor-integrated passive crossbar arrays to accelerate artificial neural networks with high reliability remains a challenge. Here, the authors propose a self-rectifying resistive switching device incorporated into a crossbar array with a density of 1 kb whose operational performance is assessed in terms of defected-cell proportion, reading margin, and selection functionality.

    • Kanghyeok Jeon
    • , Jin Joo Ryu
    •  & Gun Hwan Kim
  • Article
    | Open Access

    Existing solutions based Advanced Encryption Standard to address the security issues of nonvolatile memories incurs significant performance and power overhead. Here, the authors propose a lightweight XOR-gate based encryption/decryption technique by exploiting in-situ array operations, which achieves significant area/latency/power reduction compared to conventional designs.

    • Yixin Xu
    • , Yi Xiao
    •  & Kai Ni
  • Article
    | Open Access

    The authors demonstrate real-time blind photonic interference cancellation using FPGA-photonic coordinated processing with zero calibration micro-ring resonator control and sub-second cancellation weight identification.

    • Joshua C. Lederman
    • , Weipeng Zhang
    •  & Paul R. Prucnal
  • Article
    | Open Access

    Neural networks are powerful tools for solving complex problems, but finding the right network topology for a given task remains an open question. Here, the authors propose a bio-inspired artificial neural network hardware able to self-adapt to solve new complex tasks, by autonomously connecting nodes using electropolymerization.

    • Kamila Janzakova
    • , Ismael Balafrej
    •  & Fabien Alibart
  • Article
    | Open Access

    Reconfigurable modules have the potential to increase the energy yield of partially shaded photovoltaic systems. Here, the authors present outdoor test results of a full-scale prototype that can produce over 10% more energy than a module with fixed interconnections and six bypass diodes.

    • Andres Calcabrini
    • , Mirco Muttillo
    •  & Olindo Isabella
  • Article
    | Open Access

    Methods for the wireless, continuous monitoring and analysis of activities directly from the throat skin have not been developed. Here, the authors present a stretchable device platform that provides wireless measurements and machine learning-based analysis of vibrations and muscle electrical activities from the throat.

    • Hongcheng Xu
    • , Weihao Zheng
    •  & Libo Gao
  • Article
    | Open Access

    Transfer printing of inorganic semiconductors is essential for high-performance flexible electronics. Here, Park et al. report the micro-vacuum assisted selective transfer to integrate inorganic thin-film semiconductors on unusual substrates.

    • Sang Hyun Park
    • , Tae Jin Kim
    •  & Keon Jae Lee
  • Article
    | Open Access

    The authors demonstrate how flexible metasurfaces powered by artificial neural network can dynamically manipulate the EM scattering behavior from an arbitrary surface - an ultimate ambition for many EM stealth and communication problems.

    • Erda Wen
    • , Xiaozhen Yang
    •  & Daniel F. Sievenpiper
  • Article
    | Open Access

    Body area networks represent a wearable technology suitable for applications like virtual reality and health monitoring. Here, the study presents a wireless battery-free channel that works reliably in harsh environments, including underwater. It utilizes stretchable magneto-inductive metamaterials to enable uninterrupted communication.

    • Amirhossein Hajiaghajani
    • , Patrick Rwei
    •  & Peter Tseng
  • Article
    | Open Access

    Probabilistic computing has recently emerged as a promising energy-based computing system for solving non-deterministic polynomial-time-hard (NP-hard) problems. Here the authors develop a novel pbit unit, using NbOx volatile memristor, in which a self-clocking oscillator harnesses noise-induced metal-insulator transition, enabling high-performance probabilistic computing.

    • Hakseung Rhee
    • , Gwangmin Kim
    •  & Kyung Min Kim
  • Article
    | Open Access

    Printed stretchable electronics with sustainable elastomers are typically limited by their electro-mechanical performances. Herein, Lv et al. report a sustainable vegetable oil-based polyurethane-enabled printed conductor with high performance enabled by the porous binder and sintering of silver flakes.

    • Jian Lv
    • , Gurunathan Thangavel
    •  & Pooi See Lee
  • Article
    | Open Access

    Designing efficient 3D artificial neural networks chip remains a challenge. Here, the authors report a M3D-LIME chip with monolithic three-dimensional integration of hybrid memory architecture based on resistive random-access memory, which achieves a high classification accuracy of 96% in one-shot learning task while exhibiting 18.3× higher energy efficiency than GPU.

    • Yijun Li
    • , Jianshi Tang
    •  & Huaqiang Wu
  • Article
    | Open Access

    Feedback oscillators are a fundamental tool in science and engineering. Here, Loughlin and Sudhir provide a generalized Schawlow-Townes-like formula for quantum-limited feedback oscillators, thus giving a general model to study the fundamental output noise of these devices and techniques to reduce their noise further.

    • Hudson A. Loughlin
    •  & Vivishek Sudhir
  • Article
    | Open Access

    The authors showcase a method to design negative lumped elements by engineering the effective permittivity within the waveguide, which enables realizations of wideband waveguide metatronics and promises performance enhancement in various fields.

    • Xu Qin
    • , Pengyu Fu
    •  & Yue Li
  • Article
    | Open Access

    Next-generation light sources and fast detectors enable unparalleled materials characterization, but increased data rates and compute needs preclude real-time analysis. Here, Babu et al. leverage high-performance computing and AI@Edge to achieve real-time, low-dose imaging on streaming data at 2 KHz.

    • Anakha V. Babu
    • , Tao Zhou
    •  & Mathew J. Cherukara
  • Article
    | Open Access

    Designing efficient optoelectronic synaptic devices with advanced light responsive multimodal platforms remains a challenge. Here, the authors report on an organic optoelectronic neuromorphic platform that is based on conductive polymers and light-sensitive molecules that can be used to imitate the retina including visual pathways and typical memory processes of neurons.

    • Federica Corrado
    • , Ugo Bruno
    •  & Francesca Santoro
  • Article
    | Open Access

    Designing a high-density memory array to effectively manage large data volumes remains a challenge. Here, the authors introduce a stacked ferroelectric memory array comprised of laterally gated ferroelectric field-effect transistors device with high vertical scalability and efficient memory properties, making it suitable for 3D in-memory computing structures.

    • Sangyong Park
    • , Dongyoung Lee
    •  & Jin-Hong Park
  • Article
    | Open Access

    Failure to recognize samples from unseen classes is a major limitation of AI recognition and classification of retinal anomalies. Here, the authors present the Uncertainty-inspired Open Set learning model that categorises fundus images into pre-trained categories, and provides an uncertainty score that alerts the need for manual inspection when dealing with out-of-distribution images.

    • Meng Wang
    • , Tian Lin
    •  & Huazhu Fu
  • Article
    | Open Access

    Neuro-inspired vision systems hold great promise to address the growing demands of mass data processing for edge computing. Here the authors, develop a neuro-inspired optical sensor based on NbS2/MoS2 films that can operate with monolithically integrated functions of static image enhancement and dynamic trajectory registration.

    • Pei-Yu Huang
    • , Bi-Yi Jiang
    •  & Cheng-Yan Xu
  • Article
    | Open Access

    Physical unclonable functions (PUFs) normally ensure authentication of small physical objects. Here, instead, the authors observe that also rooms and buildings can serve as PUFs. They apply this insight to monitor the integrity of enclosed environments, such as art galleries, bank vaults, or data centers.

    • Johannes Tobisch
    • , Sébastien Philippe
    •  & Ulrich Rührmair
  • Article
    | Open Access

    In this work, authors demonstrate a fast and versatile microprinting technique to produce high-performance and customizable piezoelectric elements by employing a conductive spiny disc to electrostatically trigger instability to the liquid-air interface of the ink.

    • Xuemu Li
    • , Zhuomin Zhang
    •  & Zhengbao Yang
  • Article
    | Open Access

    Dendritic computing is a promising approach to enhance the processing capability of artificial neural networks. Here, the authors report the development of a neurotransistor based on a vertical dual-gate electrolyte-gated transistor with short-term memory characteristics, a 30 nm channel length, a low read power of ~3.16 fW and read energy of ~30 fJ for dendritic computing.

    • Han Xu
    • , Dashan Shang
    •  & Ming Liu
  • Article
    | Open Access

    Designing efficient in-memory-computing architectures remains a challenge. Here the authors develop a multi-level FeFET crossbar for multi-bit MAC operations encoded in activation time and accumulated current with experimental validation at 28nm achieving 96.6% accuracy and high performance of 885 TOPS/W.

    • Taha Soliman
    • , Swetaki Chatterjee
    •  & Hussam Amrouch
  • Article
    | Open Access

    Inspired by Alan Turing’s last works on morphogenesis, this research introduces a technique for generating metasurfaces through the emergence of anisotropic patterns capable of self-structuring in response to electromagnetic constraints.

    • Thomas Fromenteze
    • , Okan Yurduseven
    •  & Cyril Decroze
  • Article
    | Open Access

    Memory devices with open-loop analog programmability are highly desired in training tasks. Here, the authors developed an electrochemical memory array that can be accurately programmed without any feedback, offering unique capabilities for training.

    • Peng Chen
    • , Fenghao Liu
    •  & Gang Pan
  • Article
    | Open Access

    Designing efficient AI hardware capable of creating artificial general intelligence remains a challenge. Here, the authors present an approach for the on-demand generation of complex networks within a single memristor by harnessing device dynamics with intrinsic cycle-to-cycle variability and demonstrate the effectiveness of memristive complex network-based reservoirs.

    • Yunpeng Guo
    • , Wenrui Duan
    •  & Huanglong Li
  • Article
    | Open Access

    The progress of high-performance oxide-based transistors is essential for seamlessly integrating monolithic 3-D circuits into the CMOS backend. The authors propose using atomic layer deposition for ZnO due to its compatibility with low-temperature backend integration. They also successfully integrated ZnO TFTs with HfO2 RRAM in a 1 kbit 1T1R array, showcasing RRAM switching capabilities.

    • Wenhui Wang
    • , Ke Li
    •  & Yida Li
  • Article
    | Open Access

    Combinatorial optimization problems can be solved on parallel hardware called Ising machines. Most studies have focused on the use of second-order Ising machines. Compared to second-order Ising machines, the authors show that higher-order Ising machines realized with coupled-oscillator networks can be more resource-efficient and provide superior solutions for constraint satisfaction problems.

    • Connor Bybee
    • , Denis Kleyko
    •  & Friedrich T. Sommer
  • Article
    | Open Access

    Hardware architectures based on self-organized memristive networks of nano objects have attracted a growing attention. Here, nanowire connectomes are experimentally proved to translate spatially correlated short-term plasticity effects into long-lasting topological changes, thus emulating both information encoding and memory consolidation of human brain.

    • Gianluca Milano
    • , Alessandro Cultrera
    •  & Carlo Ricciardi
  • Article
    | Open Access

    In this work, the authors demonstrate a ‘jointly modulated’ amplifying programmable metasurface (APM) for simultaneous wireless information and power transmission (SWIPT). Their technique outperforms existing methods, significantly improving power transmission and adaptability for conveying energy and data across various domains, including wireless implants, 6 G networks, and IoT systems.

    • Xin Wang
    • , Jia Qi Han
    •  & Tie Jun Cui
  • Article
    | Open Access

    Designing a monolithic 3D structure with interleaved logic and high-density memory layers has been difficult to achieve due to challenges in managing the thermal budget. Here, the authors demonstrate a 3D integration of monolayer MoS2 transistors with 3D vertical RRAMs through a low-temperature fabrication process whose 1T–nR structure shows high promise for low-power and high-density memory applications.

    • Maosong Xie
    • , Yueyang Jia
    •  & Rui Yang
  • Article
    | Open Access

    Want to mute or focus on speech from a specific region in a crowded room? Here, the authors built an acoustic swarm that, along with neural networks, separates and localizes concurrent speakers in the 2D space with high precision.

    • Malek Itani
    • , Tuochao Chen
    •  & Shyamnath Gollakota
  • Article
    | Open Access

    Designing optoelectronic synapses having a multispectral color-discriminating ability is crucial for neuromorphic visual system. Here, the authors propose an strategy to introduce RGB color-discriminating synaptic functionality into a 2-terminals memristor regardless of switching medium and design a color image-recognizing CNN and light-programmable reservoir computing.

    • Jongmin Lee
    • , Bum Ho Jeong
    •  & Hui Joon Park