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Single-cell proteomic analysis of
S. cerevisiae reveals the architecture of
biological noise
John R. S. Newman1,2, Sina Ghaemmaghami1,2†, Jan Ihmels1,2, David K. Breslow1,2, Matthew Noble1,
Joseph L. DeRisi1,3 & Jonathan S. Weissman1,2

A major goal of biology is to provide a quantitative description of cellular behaviour. This task, however, has been
hampered by the difficulty in measuring protein abundances and their variation. Here we present a strategy that pairs
high-throughput flow cytometry and a library of GFP-tagged yeast strains to monitor rapidly and precisely protein levels
at single-cell resolution. Bulk protein abundance measurements of .2,500 proteins in rich and minimal media provide a
detailed view of the cellular response to these conditions, and capture many changes not observed by DNA microarray
analyses. Our single-cell data argue that noise in protein expression is dominated by the stochastic production/
destruction of messenger RNAs. Beyond this global trend, there are dramatic protein-specific differences in noise that
are strongly correlated with a protein’s mode of transcription and its function. For example, proteins that respond to
environmental changes are noisy whereas those involved in protein synthesis are quiet. Thus, these studies reveal a
remarkable structure to biological noise and suggest that protein noise levels have been selected to reflect the costs and
potential benefits of this variation.

Proteins carry out the actions necessary for cellular function. Corre-
spondingly, changes in their concentrations can have direct pheno-
typic consequences. Several approaches have been used to identify
proteins expressed in a diverse range of organisms and organelles1–4.
In particular, studies on the budding yeast Saccharomyces cerevisiae
have generated a nearly comprehensive list of proteins likely to be
translated5–7 and their copy numbers at steady state in rich medium6.
However, much less quantitative information is available on how
proteomes are remodelled in response to different environmental
cues. Additionally, inferences about changes in protein levels based
on DNA microarray measurements are limited by an imperfect
understanding of the relationship between mRNA and protein
levels6,8–10.

Notably, no widely used proteomics technique readily provides
abundance measurements for single cells, although such information
is critical for understanding fundamental biological questions.
Indeed, it has long been appreciated that many cellular processes
rely on small numbers of molecules and thus are subject to stochastic
variation (noise)11. Such noise contributes to phenotypic variability
and can either attenuate or augment a cell’s ability to respond to its
environment12–14. Even in the absence of noise, epigenetic imprints15

and a lack of synchronicity within a population can differentially
impact transcription from genetically identical loci. Also, protein
changes can occur in both graded and binary (switch-like) fashions in
response to differing environmental conditions, but bulk measure-
ments obscure such responses16–18. Thus, identifying single-cell vari-
ation is essential for understanding how cells exist as autonomously
functioning dynamic systems19.

Pioneering studies have highlighted the potential of flow cytometry
to quantify intracellular protein concentrations in individual cells20,

and to measure different samples rapidly21. More recently, several
elegant studies using the green fluorescent protein (GFP) and its
derivatives have identified many factors that can contribute to
noise15,22–25. However, the scope and nature of the central factors
that give rise to and limit noise in vivo remain poorly understood (see
ref. 26), in large part because existing studies have examined only a
handful of genes.

Here we describe a novel, integrated strategy for large-scale,
quantitative single-cell proteomics. Our approach uses high-
throughput flow cytometry to make precise measurements on a
collection of S. cerevisiae strains in which each protein is expressed as
a carboxy-terminal GFP fusion from its endogenous promoter and
natural chromosomal position3. With this approach, it is now
possible to monitor the internal state of the cell with unprecedented
resolution. This allows us to follow protein changes in response to
environmental perturbations and to uncover both the global and
protein-specific biological structure of noise in budding yeast.

Measuring protein abundance by flow cytometry

To quantify the yeast proteome, we automated sample growth and
handling, and also wrote custom software (HTS-Pro; see Supplemen-
tary Notes 1 and 2) to control the delivery of GFP-tagged cells to a
flow cytometer via an autosampling device. With this approach,
approximately seven samples can be measured per minute, counting
.50,000 cells per sample, with cross-contamination of ,0.1%.
Furthermore, we developed an integrated set of software tools that
allows storage, manipulation and analysis of data (for example, to
eliminate systematic sources of variation, and to extract information
about cell size, shape and fluorescence; see Supplementary Notes 2).

We measured the fluorescence of 4,159 GFP-tagged yeast strains
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grown to mid-log phase in rich (YEPD) medium, starting from
single colonies. These strains define the set that can be detected
by fluorescence microscopy under normal laboratory growth
conditions3. The flow cytometry measurements show remarkable
precision and sensitivity. The fluorescence is highly reproducible
(coefficient of correlation, r2 ¼ 0.99), even when strains are grown in
medium prepared on different occasions and the measurements are
separated by several weeks (Fig. 1a). The very low variability seen in
full biological replicates probably results from instrument accuracy
and from the minimal sample preparation required (that is, measure-
ments are made on intact cells)27. The sensitivity of the approach
permits us to distinguish .60% (.2,500) of the GFP-tagged strains
from autofluorescence with .95% confidence (Supplementary
Tables S1 and S3). After correcting for autofluorescence, the standard
errors for the lowest GFP fluorescence intensities are still less than
^45% of the median values. For larger fluorescence intensities, the
standard errors fall to about ^2.5% of the median values (see
Supplementary Notes 2).

Comparison of the proteins we detect to quantitative measure-
ments obtained under similar growth conditions using western blot
analysis of a set of tandem affinity purification (TAP)-tagged strains6

reveals that cytometry detects nearly all proteins present at greater
than ,8,000 tagged proteins per cell. This coverage drops to about
50% for proteins expressed at 2,000–4,000 copies per cell, and falls

rapidly thereafter (Fig. 1b). However, we estimate that moderate
improvements in fluorescent proteins28,29, coupled to lower auto-
fluorescence and reduced instrument drift, would permit us to detect
,85% of the proteome (data not shown). Alternatively, microscopy
can be used to quantify proteins with low abundances3,30 (Sup-
plementary Fig. S6a; J.R.S.N. and J.S.W., unpublished observation).

Several lines of evidence argue that our measured fluorescence
accurately reports on protein abundance. First, the fluorescence does
not change substantially on the timescale required to harvest and
measure cell fluorescence (Supplementary Fig. S5). Second, the
fluorescence measurements are in excellent agreement (r2 ¼ 0.997)
with quantitative fluorescence microscopy (Supplementary Fig. S6a).
Third, with the exception of proteins localized to the vacuole, cellular
fluorescence is almost exclusively due to intact fusion proteins (rather
than cleaved GFP), as confirmed by western blotting of .150 strains
(Supplementary Fig. S7c). Fourth, there are no global problems with
the folding and oxidation of GFP, as the fluorescence measured by
cytometry is linearly proportional to abundances determined by
western blotting using TAP-tagged strains (r2 ¼ 0.80; Supplementary
Fig. S7a). The degree of agreement between the two approaches is
consistent with errors from duplicate western blotting measurements
(r2 ¼ 0.77; Supplementary Fig. S7b; see also ref. 30). Finally, we
found no evidence that GFP interferes with the recognition and
destruction of proteins by the ubiquitin–proteasome system, which

Figure 1 | Quantitative analyses of protein abundance using flow
cytometry. a, Median fluorescence values for biological replicates of
,4,159 GFP-tagged strains grown in rich (YEPD) medium plotted against
each other. M1, measurement 1; M2, measurement 2; a.u., arbitrary units.
b, The frequency of detected, tagged strains is plotted as a function of the
number of protein copies per cell (log2). TAP-tagged strains (red) were
detected by western blotting6; GFP-tagged strains (blue) were detected by
cytometry. The former approach detects essentially all tagged proteins
present at more than 50 copies per cell, and thus provides a benchmark for
evaluating the sensitivity of new approaches. c, Protein abundance
measurements for 2,223 strains grown in rich (YEPD) and minimal
(SD þ Leu þ Met þ Ura) media. The standard errors of the measurements
are also shown. Fluorescence from313 strains can be quantified in YEPDbut
not SD, and 235 strains can be quantified in SD but not YEPD (data not
shown). However, 2,763 strains (66% of the GFP library) can be quantified
in at least one condition. d, The relationship between protein and mRNA

ratios larger than two (colours other than grey) for cells grown in SD and
YEPD. Changes in mRNA levels are largely captured by changes in protein
levels (blue). In 21 cases, mRNA levels change without a corresponding
change in protein levels. For 10 of these cases, protein levels do not change
(orange), whereas for the remaining 11 cases (red), the proteins change in a
direction opposite to that observed for the mRNA (see the main text). In
contrast, changes in protein levels are not always captured by changes in
mRNA levels, and we observed 131 instances of this behaviour (green).
mRNA ratios were measured using DNA microarrays. Ratios were grouped
operationally by lines having slopes of þ3/13 (blue), 23/21

3 (red), þ 3/23
(green) and 1

3/2
1
3 (orange). e, Schematic showing that 11 out of 14

tricarboxylic acid (TCA) cycle proteins quantified by cytometry show
greater than 1.5-fold induction in SD compared to YEPD (red segments,
outer circle), but only 4 out of 19 mRNAs quantified by microarray analysis
show induction at a similar level (red segments, inner circle). Note that Aco1
is used twice in the TCA cycle.
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is a major mechanism for protein turnover31 (Supplementary Fig. S8;
D. Toczyski, personal communication). Although, for a subset of
proteins, the presence of a GFP tag will alter abundances, the large
majority of fusion proteins (.80% based on analysis of essential

proteins3) remains functional. Notably, even when the GFP tag
influences abundances, relative changes can still be determined
accurately, provided that the tag perturbs protein levels by a constant
amount across different conditions.

Protein and mRNA levels in rich and minimal media

Next, we explored the differences between steady-state protein levels
for cells grown in rich (YEPD) and minimal (SD) media (Fig. 1c;
Supplementary Table S1). Of the 2,223 proteins that can be detected
in both conditions, 232 are expressed at higher levels in SD (.99%
confidence), and 101 increase by at least twofold. Conversely, 684
proteins are expressed at higher levels in YEPD (.99% confidence),
and 112 are induced by at least twofold. These changes provide a
coherent description of how cells adapt to environments with
abundant or modest levels of nutrients consistent with our under-
standing of this biological response10,32. For example, many proteins
induced in rich medium are involved in cell growth and division
(such as ribosomal proteins and cell wall biosynthesis enzymes).
Conversely, many proteins induced in minimal medium are involved
in the production of small molecules that cannot be taken up from
the surrounding environment, such as amino acids and nucleotides.

To understand how protein and mRNA changes are related, and to
identify potential examples of post-transcriptional regulation (PTR;
that is, regulation at the level of translation or protein degradation),
we extended our studies by using DNA microarrays to quantify
fluctuations in mRNA levels between cells grown in YEPD versus SD
(Supplementary Table S2). Overall, we find that mRNA changes are
largely captured by changes in protein abundances (Fig. 1d). For
example, focusing on genes for which mRNA levels change at least
twofold, we find 151 instances where both mRNA and protein level
changes occur in the same direction, and only 21 instances where
mRNA levels change and protein levels remain static or change in the
opposite direction (see Fig. 1d legend). In fact, further studies using
quantitative polymerase chain reaction (qPCR) revealed that several
of these discrepancies were due to errors in the microarray measure-
ments (data not shown). It is important to note that, as mRNA
measurements are made using untagged strains, these results also
argue that the GFP tag does not significantly impair our ability to
detect physiological responses.

In contrast, there are a significant number of cases (135, using a
twofold threshold) where protein changes are not mirrored by
mRNA changes (Fig. 1d). Many of these protein changes yield
insights into coordinated cellular responses that occur when cells
are grown to steady state in YEPD or SD. One qualitative illustration
is provided by the induction of tricarboxylic acid (TCA) cycle
enzymes in SD, probably to generate key intermediates involved in
amino acid biosynthesis (such as 2-oxoglutarate for lysine biosyn-
thesis). Here, 11 out of 14 measured proteins are coordinately
upregulated .1.5-fold (outer circle in Fig. 1e), whereas only 4 out
of 19 measured genes are coordinately upregulated to the same extent
(inner circle in Fig. 1e). Additional qualitative examples are provided
by proteins and genes involved in 20S and 35S ribosomal RNA
processing (19/24 proteins are induced in YEPD versus 4/24 mRNAs,
and 13/24 proteins are induced in YEPD versus 3/24 mRNAs,
respectively; Supplementary Table S2).

More quantitatively, we sought to independently verify examples
of PTR. Because rare examples of PTR can be masked by measure-
ment inaccuracies, particularly when the total number of measure-
ments is large, the ability to identify infrequent cases of PTR provides
a critical test of the overall accuracy of an approach. For our studies,
we chose ten cases where additional microarray measurements
performed in triplicate confirmed that mRNA levels change discord-
antly from protein levels when cells are shifted from SD to YEPD.
Next, we used western blotting to confirm the protein measurements
made by cytometry, and qPCR to confirm the mRNA measurements
made by microarrays. In all cases examined, we were able to
corroborate the discordance between protein and mRNA changes

Figure 2 | Single-cell variation, gating and global trends in noise. a, Two
GFP-tagged strains with the same mean intensities show different degrees of
variation. Rpl35A–GFP has a CVof 11.8 (red), whereas Nop8–GFP has a CV
of 38.6 (blue). Cells from the same population with low or high intensities
retain their original fluorescence intensities when sorted and re-measured
(inset), indicating that variation is a reproducible cellular property. The
scales of the main and inset plots are identical (omitted for clarity; true also
for b). b, Cells expressing the cell-cycle-regulated histone subunit Hhf2
fused to GFP normally show two peaks (red) in asynchronous cultures
grown tomid-log phase in YEPD. Gated cells show a single peak, and a lower
total variation (inset, blue). The gated peak can be exactly superimposed on
the left peak in the ungated population (not shown for clarity).
c–f, Decomposition of total noise (black) into intrinsic (red) and extrinsic
(blue) contributions using two-colour strains and different FSC and SSC
gate radii. Intrinsic noise due to the instrument for the voltages used for each
experiment is also shown (grey). The gate radius used for CV calculations
reported in the paper (4,096 a.u.) is indicated by a vertical dotted line in each
graph. For gated cells, extrinsic noise dominates the total noise of the
abundant protein Tef2 (c; abundance ¼ 30,700). Intrinsic and extrinsic
noise make equal contributions to the total noise of the ribosomal protein
Rps25A (d; abundance ¼ 6,132). Intrinsic and extrinsic noise make equal
contributions to the total noise of Atp4, but intrinsic noise is consistently
high (e; abundance ¼ 1,276). For gated cells, the intrinsic noise of His4
dominates the total noise (f; abundance ¼ 2,090). g, Global noise trends are
revealed by gating. There is little dependence of log10(CV

2) on
log10(abundance) for strains gated using a large radius (40,960 a.u.; top
panel). In contrast, there is a striking reduction in log10(CV

2) with
increasing abundance when a radius chosen to minimize extrinsic noise is
used (4,096 a.u.; bottom panel). The r2 for the correlation between CV2 and
1/abundance is 0.64 (see Supplementary Notes 2). Uncorrelated stochastic
processes are expected to show a slope of 21. This relationship is observed
for proteins expressed at low and moderate levels. For highly expressed
proteins, extrinsic noise dominates the measured variation, but this
component can be eliminated using a two-colour strategy24 to reveal
underlying noise consistent with stochastic processes (for example, for
Rps25A–GFP and Tef2–GFP; red diamonds). A running median for each
plot is also shown (orange). Instrument noise is shown in the bottom panel
(grey line).

ARTICLES NATURE|Vol 441|15 June 2006

842



© 2006 Nature Publishing Group 

 

(see Supplementary Notes 2; Supplementary Fig. S9). Further vali-
dation of two of our observations (involving Fet3 and Ftr1) is
provided by a recent report showing that iron uptake by
these proteins is controlled post-transcriptionally by regulated
proteolysis33.

Defining global trends in cellular noise

A central difference between this study and previous large-scale
analyses of protein or mRNA abundances is that cytometry functions
with single-cell resolution and thus can report on cell-to-cell varia-
tion. Indeed, we see large differences in coefficient of variation (CV;
(standard deviation/mean) £ 100(%)) values for proteins expressed
at similar levels (Fig. 2a). These differences are reproducible, as cells
with low and high fluorescence intensities can be separated from a
single population by sorting, and retain their original fluorescence
levels when re-measured immediately (Fig. 2a, inset).

Extracting biological or functional meaning from single-cell data
can be challenging. Specifically, there can be large global differences
in protein levels between isogenic cells due to heterogeneity in cell
size and cell cycle state that obscure protein-specific variation (data
not shown and Fig. 2b, respectively)34,35. In principle, cytometry is
well suited to reducing the contributions of these factors to protein
variation as it can provide an approximate measure of cell size and
granularity (using the forward (FSC) and side (SSC) scatter param-
eters, respectively). Nevertheless, the effectiveness and importance of
correcting for such effects is unclear34,35. Therefore, we systematically
explored the ability of gating to extract biological structure from
global abundance heterogeneity by defining a circular gate centred
about the FSC and SSC medians and varying its radius. Reducing the
radius initially led to a steep decrease, and then a more moderate
decline, in measured CV values (Fig. 2c–f; Supplementary Fig. S3a).
For our studies, we used a radius that fell in the latter regime, chosen
to achieve a substantial reduction in variation, while maintaining

sufficient numbers of cells (that is, ,500, or 1% of all cells measured
in a typical experiment) to reproducibly calculate CV values: 99% of
the CV values from gated populations fall within ^20% of the
average of repeated measurements, and this reproducibility is main-
tained with increasing CV magnitude (see Supplementary Notes 2;
Supplementary Fig. S3d, e). Although, following gating, protein
variation is typically well approximated by a normal distribution, a
notable subset of tagged proteins shows distributions with significant
tails, implying that our reported CV values sometimes underestimate
the variation at the extremes of populations. Such deviations from
normal distributions, which will be described in detail elsewhere,
suggest that there may be multiple processes acting in concert to
generate noise.

The critical role of gating in isolating cells with uniform properties
is revealed by two observations. First, gating eliminates one of the two
peaks normally observed for the GFP-tagged, cell-cycle-regulated,
histone subunit Hhf2 (Fig. 2b, inset; see also Supplementary Notes
2). Second, gating leads to a dramatic reduction in noise due to global
differences between cells, as revealed using a modification of the two-
colour experiment described by Elowitz et al.24 that permits differ-
entiation between correlated (extrinsic) noise arising from variation
between cells, and uncorrelated (intrinsic) noise that arises from
stochasticity in gene expression/protein production (see Supplemen-
tary Notes 2). Using four different double-tagged diploid yeast
strains (that is, with one chromosomal locus of an open reading
frame tagged with GFP, and the second with a red fluorescent protein
variant (tdTomato29)), we found that whereas ungated populations
are dominated by extrinsic noise, reduction of the FSC and SSC gate
radii decreased the contribution of extrinsic noise either to levels
comparable to intrinsic noise (Tef2, Atp4 and Rps25A), or, in one
case (His4), to a level below that of intrinsic noise (Fig. 2c–f; see also
Supplementary Notes 2). As expected, gating has a minimal effect on
the levels of intrinsic noise.

These two-colour studies indicate that intrinsic noise makes a
significant contribution to the total variation measured for gated
strains. In turn, this predicts that our data should exhibit the
characteristic inverse-proportional relationship between CV2 and
protein abundance (ref. 36) associated with fluctuations due to
uncorrelated stochastic processes, such as the production and
destruction of protein or mRNA molecules. Indeed, a strong inverse
proportionality is observed for gated (but not ungated) measure-
ments, particularly for proteins of low and medium abundances
(Fig. 2g). Notably, this is not due to the response of the cytometer,
which we measured directly (see Supplementary Notes 2). In con-
trast, for abundant proteins we find that concentration-independent
noise due to cellular heterogeneity dominates. When this extrinsic
noise is excluded for two highly expressed proteins, Tef2 and Rps25A
(studied using the two-colour approach described above), the
intrinsic noise is found to be close to that predicted by extrapolation
from the linear dependence of noise seen for lower abundance
proteins (Fig. 2g).

Biological structure in protein variation

Beyond these global relationships between noise and protein abun-
dance, we observe substantial differences in variation on a protein-
by-protein basis (for example, see Fig. 2g). To extract and interpret
this information in a systematic manner, we calculated the distance of
each CV to a running median of CV values (hereafter referred to as
DM; Supplementary Table S1). DM values permit protein-specific
noise levels to be compared independently of confounding influences
due to protein abundance, noise from the instrument response, or
intracellular differences in cells globally affecting protein production.

We looked for correlations between DM values and both known
and potential factors that might influence noise, including those that
act at multiple points during protein production, organization and
destruction (Figs 3 and 4; see also Discussion and Supplementary
Notes 2). We find that a number of factors shown or postulated to

Figure 3 | Biological structure of protein variation. a, Biological processes
(represented by Gene Ontology (GO) terms) are strongly enriched for
proteins with low or high variation (blue and red, respectively). The
distribution of P-values obtained using randomized data is shown in black
(see also Supplementary Notes 2). b, Specific biological processes have
higher or lower variation than expected by chance. Two classes of proteins
with low noise participate in protein destruction. Two classes of proteins
with high noise are involved in energy production.
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influence the noise levels of individual proteins have only mild
statistical correlations with low or high variation. These include
chromosomal proximity of genes22 (P < 0.21–3 £ 1023; see Sup-
plementary Notes 2), mRNA half-life (P < 1023), and participation
in protein–protein interactions37 (P < 0.5). Conversely, there is a
dramatic enrichment of Gene Ontology (GO) terms38 in both quiet
and noisy proteins (Fig. 3a; Supplementary Table S5).

One of the most prominent correlations we find involves modes of
transcriptional regulation and noise. For example, the binding of the
transcription factors Fhl1, Rap1 and Abf139 to promoter regions is
associated with low noise of the proteins encoded by the resulting
gene products. In sharp contrast, numerous factors that act on
chromatin structure to reversibly convert inactive DNA to active

DNA, including SAGA, SWI/SNF, Ino80, Isw2 and Swr1, regulate
genes encoding proteins whose levels fluctuate considerably
(P ¼ 10236, 1029.8, 1026.7, 1025.4 and 1024.1, respectively). As
suggested by Blake et al.23 and Raser et al.35, high noise is likely to
be due, at least in part, to the introduction of a slow step into the
production of mRNA, making the process more prone to bursts. In
this respect, it is interesting to note that both Rap1 and Abf1 have
been shown to disrupt nucleosome structure, possibly obviating the
influence of chromatin in augmenting uncorrelated stochastic
noise40. Note, however, there are at least 80 proteins encoded by
SAGA-dependent genes41 that have low noise (DM , 1), and this set
is enriched for functional groups (for example, enzymes involved in
glycolysis (P < 10210)). Conversely, there are at least 90 proteins

Figure 4 | Overview of major factors contributing to biological noise.
a, Proteins targeted by chromatin remodelling complexes exhibit large
variation whereas proteins participating in translation exhibit low variation
(see also Supplementary Notes 2, Supplementary Fig. S14, Supplementary
Table S5 and Supplementary Table S6). b, mRNA or protein copy number
and the variation in mRNA expression are very strongly correlated with CV

andDM values, respectively. Other cellular properties previously postulated
to influence noise22,37 are not. Abbreviations: Dist., distance; CV, coefficient
of variation; t1/2, half-life; j, standard deviation; DM, distance to median
(see the main text for a definition); CAI, codon adaptation index; Ribos.
dens., ribosome density; prot., protein; No., number; PPI, protein–protein
interactions; vs, versus.
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with high noise (DM . 1), including enzymes that participate in
ATP synthesis (P < 1025), whose corresponding genes are not
known to be targets of any of the chromatin remodelling/modifying
complexes listed above. Therefore chromatin remodelling/modifying
complexes are neither sufficient nor necessary to generate noise
in vivo.

Proteins belonging to defined functional groups also are distin-
guished by their noise levels (Fig. 3b and Fig. 4). For example, the
SAGA-dependent genes encoding proteins that respond to changes in
the environment, such as those involved in stress-response, amino
acid biosynthesis, and in heat shock (P < 10227, P < 1028 and
P < 1025, respectively), are correlated with high levels of noise.
Conversely, proteins involved in translation initiation (P < 1025),
translation/ribosomal proteins (P < 2 £ 1026) and protein degra-
dation (P < 5 £ 1027) exhibit low variation. In addition to disrup-
tion of nucleosome structure (see above), the low noise in ribosomal
proteins also might arise from tight coupling of ribosome number to
growth status and cell size, and/or the rapid degradation of free
ribosomal subunits (see ref. 42).

Finally, we find an unexpected relationship between noise and
cellular location. Proteins localized to the Golgi (and, in particular,
COPI vesicles) exhibit low variation (P < 1025). In contrast, high
variation is correlated with localization to some membrane-bound
organelles such as mitochondria (P < 10223) and peroxisomes
(P < 1023) (Supplementary Table S5), raising the possibility that
noise can be caused by unequal partitioning of low-copy number
organelles during mitosis. Further evidence of this is provided by our
observation that strains expressing GFP fused to an intact peroxi-
somal targeting sequence (GFP–PTS1) have higher noise than those
expressing GFP fused to a reversed sequence comprising the same
amino acids (GFP–pts1*), even when the proteins are expressed
from identical promoters and loci (Supplementary Notes 2 and
Supplementary Fig. S11a). Additionally, noise in peroxisomal pro-
teins is specifically increased by disruption of correct peroxisome
partitioning (by deletion of Inp143; Supplementary Fig. S11b).
Thus, protein localization—independent of abundance or mode of
transcription—is sufficient to influence single-cell variation.

Discussion

Here we present a new strategy for large-scale protein abundance
measurements that is reproducible, sensitive, rapid and simple. The
immediate value of our bulk protein measurements is demonstrated
by their ability to characterize the response of cells grown in different
environments and to provide a substantially richer view of cellular
behaviours than could have been obtained from monitoring mRNA
levels alone. The examples of post-transcriptional regulation identi-
fied here undoubtedly represent only a small fraction of the cases
where mRNA and protein levels are discordant, as steady-state
growth is likely to favour correlated transcription and translation.
Indeed, we observe that under dynamic conditions, mRNA and
protein levels are often markedly different (J.R.S.N., S.G. and
J.S.W., unpublished data).

Perhaps the most fundamental advance reported here is the
analysis of thousands of strains at single-cell resolution, permitting
us to define the principal sources of protein noise. These studies
reveal that the major factor governing protein variation is abun-
dance. Moreover, the shape and magnitude of the global relationship
between noise and abundance strongly argues that variation most
likely originates from the stochastic production and destruction of
mRNA molecules. Indeed, the magnitude of the variation observed
here (CV ,30% for low–medium abundant proteins) is entirely
consistent with that expected if protein variation results from
Poisson noise owing to small mRNA numbers (1–2 per cell44) and
is mitigated by a filtering effect that arises because proteins are
typically far longer-lived than their messages45 (see Supplementary
Notes 2).

Importantly, this concentration-dependent noise represents a

fundamental limitation on expression precision. For mechanisms
involving the concerted production of messages (for example,
following chromatin remodelling; see below), noise levels might
increase above this limit. Conversely, if there were a biological need
for lower noise, this could only be achieved through a specific
mechanism (for example, feedback control or very short-lived
messages)26. Consistent with this interpretation, there is an effective
lower bound for variation (DM, 2 4), but a much broader range of
DM values is associated with high variation.

Beyond such global features of noise described above, our studies
reveal a remarkable structure in protein-specific variation, and
point to a central role for transcriptional regulation in determining
this structure. Thus, noise, in addition to other considerations
such as speed, frequency and amplitude, is a critical property that
must be described when defining the response inherent to a given
transcriptional mechanism.

In this context, it is revealing to look at the mechanisms of
transcriptional regulation used by different functional classes of
proteins. The use of a mode of transcription that helps minimize
noise for polypeptides governing protein production and destruction
(for example, potentially through the disruption of chromatin
structure) may guarantee that downstream processes that must be
effected accurately (for example, the cell cycle) are not burdened by
imprecision36. In contrast, proteins that change abundance with
changing environmental conditions are controlled preferentially by
factors begetting large amounts of variation. This noise might be an
acceptable by-product of the mode of transcription: a large dynamic
range, achieved through the ability to undergo strong repression or
activation, is obtained at the cost of large variation. In fact, genes with
the largest dynamic ranges encode proteins with the greatest noise
(P < 10267; Supplementary Fig. S15). However, a large dynamic
range can be achieved without a concomitant increase in noise (for
example, ribosomal proteins). This suggests an alternative expla-
nation: for some proteins that permit cells to respond to environ-
mental perturbations, excursions from the mean at the single-cell
level might benefit populations. In the short term, such deviations
might facilitate a cell’s initial response to environmental variation.
More generally, the capacity to vary might permit a population to
sample multiple phenotypic states to maximize the chances of some,
but not all, cells’ survival in an adverse environment13.

In summary, we have outlined and validated an approach that
makes the yeast proteome readily accessible to quantitative single-cell
measurements. As new GFP libraries become available, it should be
straightforward to extend our approach to other organisms.
Additionally, we have provided the first overarching view of noise
in S. cerevisiae. The establishment of a robust strategy to rapidly
measure both intrinsic and extrinsic noise with high precision across
many strains now puts us in an excellent position to broadly explore
the biology of noise.

METHODS
Strains. Strain acquisition, construction, growth, handling and genotypes are
described in Supplementary Information.
Flow cytometry. Cells were delivered to an analytical cytometer using an
autosampler device (LSR-II and HTS, respectively; Becton Dickinson). The
autosampler was controlled by custom software (HTS-Pro; see Supplementary
Notes 1 and 2). GFP was excited at 488 nm, and fluorescence was collected
through a 505-nm long-pass filter and either a HQ510/20£ or a HQ515/20£
band-pass filter (Chroma Technology Corp.). tdTomato29 was excited at 532 nm,
and fluorescence was collected through a 585/42-nm band-pass filter.
Data analysis. Raw cytometry data were processed to eliminate systematic
errors due to (1) uneven sample flow, (2) events at the bottom or top of the
instrument’s range, and (3) rare events unlikely to represent normal cellular
properties (as judged either by size or fluorescence). Processed data were used for
bulk fluorescence calculations. Calculated values were rejected if additional
quality control thresholds were not met (for example, repeat measurements did
not agree to within ^20%; see Supplementary Information). Single-cell vari-
ation was calculated for cells contained within a circle defined on the FSC/SSC
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plane having a radius of 4,096 arbitrary units (a.u.) and centred about the
medians of these two parameters. Intrinsic and extrinsic noise values were
calculated as described by Elowitz et al.24 using strains containing GFP- and
tdTomato-tagged proteins.
Additional techniques. Additional experimental procedures are listed in Sup-
plementary Information.
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