Letters in 2012

Filter By:

Article Type
Year
  • Shor’s quantum algorithm factorizes integers, and implementing this is a benchmark test in the early development of quantum processors. Researchers now demonstrate this important test in a solid-state system: a circuit made up of four superconducting qubits factorizes the number 15.

    • Erik Lucero
    • R. Barends
    • John M. Martinis
    Letter
  • It is known that graphene exhibits natural ripples with characteristic lengths of around 10 nm. But when it is stretched across nanometre-scale trenches that form in a reconstructed copper surface, it develops even tighter corrugations that cannot be explained by continuum theory.

    • Levente Tapasztó
    • Traian Dumitrică
    • László P. Biró
    Letter
  • Doping a topological insulator with manganese makes it magnetic. Moreover, decreasing the concentration of Dirac fermions in a Mn-doped topological insulator with an electric field increases the strength of its magnetic characteristics—a trait that could be valuable to the use of topological insulators in the development of spintronics.

    • Joseph G. Checkelsky
    • Jianting Ye
    • Yoshinori Tokura
    Letter
  • When a low-viscosity fluid penetrates a fluid of higher viscosity confined by parallel plates, finger-like patterns propagate at the interface between the two fluids. Experiments now show that tapering the fluid cell can suppress this instability - providing interfacial control via a simple change in geometry.

    • Talal T. Al-Housseiny
    • Peichun A. Tsai
    • Howard A. Stone
    Letter
  • In metals, the Coulomb potential of charged impurities is strongly screened, but in graphene, the potential charge of a few-atom cluster of cobalt can extend up to 10 nm. By measuring differences in the way electron-like and hole-like Dirac fermions are scattered from this potential, the intrinsic dielectric constant of graphene can be determined.

    • Yang Wang
    • Victor W. Brar
    • Michael F. Crommie
    Letter
  • Two-dimensional Bose fluids—such as liquid-helium films, or confined ultracold atoms—cannot form a condensate, but become superfluid instead. Frictionless flow, proving superfluid behaviour, has now been observed in an ultracold two-dimensional Bose gas that is stirred with a laser beam.

    • Rémi Desbuquois
    • Lauriane Chomaz
    • Jean Dalibard
    Letter
  • Chemical reactions between a single trapped ion and a condensate of ultracold neutral atoms are investigated by controlling the quantum states of both ion and atoms—revealing the effect of the hyperfine interaction on the reaction dynamics.

    • Lothar Ratschbacher
    • Christoph Zipkes
    • Michael Köhl
    Letter
  • In systems of oscillators, phase-locking behaviour can, in theory, coexist with incoherent dynamics—invoking the fabled chimera state. Now, experimental realization of a coupled-map lattice reveals dynamical states displaying coexisting spatial domains of coherence and incoherence.

    • Aaron M. Hagerstrom
    • Thomas E. Murphy
    • Eckehard Schöll
    Letter
  • Chimera states describing the stable coexistence of synchronous and incoherent dynamics have so far only been realized numerically. An experimental demonstration of these states in a network of discrete chemical oscillators reveals behaviour that differs from that predicted by existing phase-oscillator models.

    • Mark R. Tinsley
    • Simbarashe Nkomo
    • Kenneth Showalter
    Letter
  • How and why Fermi arcs—disconnected segments of the Fermi surface—emerge in the pseudogap phase of cuprate superconductors is a mystery. A technique for analysing angle-resolved photoemission spectroscopy data that removes momentum broadening effects suggests these arcs do not reflect true Fermi surface states, which would explain why they do not form continuous loops.

    • T. J. Reber
    • N. C. Plumb
    • D. S. Dessau
    Letter
  • Nuclear spin is seen as a robust qubit. Electrons can be used to ‘read’ to the nuclear state, but their presence causes decoherence. Researchers now show that this problem can be circumvented using a temporary spin state, thus enabling entanglement of the nuclear state at unprecedented speeds.

    • Vasileia Filidou
    • Stephanie Simmons
    • John J. L. Morton
    Letter
  • A technique capable of detecting the electric field associated with individual atoms is now demonstrated. Atomic-resolution differential phase-contrast imaging using aberration-corrected scanning transmission electron microscopy provides a sensitive probe of the gradient of the electrostatic potential in a crystal lattice.

    • Naoya Shibata
    • Scott D. Findlay
    • Yuichi Ikuhara
    Letter
  • Density functional theory provides a powerful framework for probing electronic structure in many-body systems. A new functional for particles interacting via short-range potentials extends its applicability to ultracold atoms in optical lattices.

    • Ping Nang Ma
    • Sebastiano Pilati
    • Xi Dai
    Letter
  • Hilbert space is made up of a potentially infinite number of dimensions that correspond to all the parameters needed to fully define a system. The idea is seen as an important resource for quantum information processing. A technique for estimating the number of dimensions in an unknown system based on the results of measurements performed on it—a so-called dimension witness—is now experimentally demonstrated.

    • Johan Ahrens
    • Piotr Badzia̧g
    • Mohamed Bourennane
    Letter
  • Is it possible to deduce the number of dimensions of a completely unknown system only from the results of measurements performed on it? So-called dimension witnesses allow such an estimation, and are now experimentally demonstrated using pairs of entangled photons.

    • Martin Hendrych
    • Rodrigo Gallego
    • Juan P. Torres
    Letter
  • You influence a system by measuring it. This back-action is an important consideration when studying tiny structures in which quantum effects play a crucial role. Researchers now show that quantum interference could provide a way to negate back-action in quantum-dot-qubit circuits.

    • G. Granger
    • D. Taubert
    • A. S. Sachrajda
    Letter
  • Uranium ruthenium silicide exhibits a discontinuity in its specific heat at 17.5 K. The underlying cause of this anomaly is hotly debated. A first-principles study of high-order correlations in its electronic structure suggests this behaviour is the result of the emergence of rank-5 nematic order.

    • Hiroaki Ikeda
    • Michi-To Suzuki
    • Yuji Matsuda
    Letter
  • A quantum memory that combines high-efficiency and long lifetime is now demonstrated. Employing a collective excitation, or spin wave, in an ensemble of atoms in a trap improves memory lifetime, while incorporating the trap into an optical ring cavity simultaneously aids higher retrieval efficiency.

    • Xiao-Hui Bao
    • Andreas Reingruber
    • Jian-Wei Pan
    Letter
  • The penetration of a superconducting current from a superconductor into a half-metallic ferromagnet is usually forbidden. Resonances in the conductance spectra of superconductor/half-metal heterostructures suggest this restriction is lifted by the occurrence of unconventional equal-spin Andreev reflection.

    • C. Visani
    • Z. Sefrioui
    • Javier E. Villegas
    Letter